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ABSTRACT

Experimental and theoretical studies were performed on strengthening of
ceramics with discontinuous fibers. Strengthening of chemically consolidated
zirconia with discontinuous tungsten fibers, graphite (Thornel 40) fibers, and
sapphire as well as silicon carbide whiskers, was investigated experimentally.
Addition of SiC whiskers gave highest increase in strength of zirconia at

room and elevated temperatures. A 7.4-weight-percent of SiC whiskers
increased the room-temperature average flexure strength of ZrO2 from

4, 000 psi to 5, 700 psi, at 2, 000°F, the strength increased from 165 psi

to 1, 600 psi. The SiC-whisker-strengthened matrix was characterized for
mechanical and physical properties at room and elevated temperatures. Ana-
lytical tradeoff studies were performed on strength of prestressed, whisker-
strengthened zirconia. Flexure and tensile specimens, uniaxially prestressed
with tungsten cables, were fabricated and tested at room and elevated tem-
peratures., The response of uniaxially prestressed ceramic to thermal shock
and thermal cycling was also evaluated and compared to non-prestressed
matrix. A theory has been developed for predicting the stresses in biaxially
prestressed cylindrical structures subjected to external loading and thermal
environment. Equations and an analytical approach for estimating the strength
of such structures were developed. Biaxially prestressed cylinders were
then designed, fabricated, and tested. Four types of tests were performed

on cylindrical specimens: (1) hoop tensile tests at room temperature

(1:0 stress ratio); (2) biaxial tensile tests at room temperature (1:2 stress
ratio); hoop tensile tests at 2000°F (1:0 stress ratio); high-velocity ballistic
impact tests. The strengths of biaxially prestressed cylinders tested in hoop
tension and biaxial tension at room temperature, and in hoop tension at
elevated temperature, were 9, 350 psi, 10, 970 psi and 4, 740 psi, respectively.
The test data on uniaxially and biaxially pr‘estressed specimens were

evaluated and correlated with theory.
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Section 1
INTRODUCTION

The properties that make ceramics desirable as structural materials for
elevated temperature applications are their high melting points, high com-
pressive strengths, good strength retention at high temperatures, and
excellent resistance to oxidation. The undesirable properties of ceramics
for anticipated high-temperature aerospace application, such as nose tips,
leading edges, body’surfaces, nozzle components, heat shields, and
permanent external thermal protective coatings for spacecraft and manned
re-entry vehicles, are their low tensile strengths and p&or resistance to
impact, vibration, and thermal shock, If'cei'amics are to be utilized _in
the above-cited apfjlications, their undesirable properties must be over-
come or circumvented, and advantage must be taken of their desirable
characteristics. It istheneed to overcome these major weaknesses that
has led to research on strengthening of ceramics by means of metal fibers,

whiskers, and mechanical and thermal prestressing.

Experimental and theoretical studies on uniaxial prestressing of ceramics
with high-strength wires have been conducted at McDonnell Douglas
Astronautics Company - Western Division (MDAC-WD) under contract

NAS 7-429 (Reference 1-1). During this initialleffort, analytical methods
were developed for predicting the behavior of prestressed ceramics, and

an experimental procedure was developed for inducing uniaxial prestress.

In essence, the concept consisted of internally prestressing, in compression,
a ceramic matrix with continuous wires, while processing at low tempera-
tures. The ceramic matrix was chemically consolidated at from 400°F to
600°F, thus eliminating the degradation of metal reinforcing usually
associated with the high processing temperatures of conventional ceramics.

The ceramic slurry was cast around pretensioned filaments and



cured in place. After the ceramic was cured and removed from the mold,
release of the pretensioned filaments induced a compressive stress in the
ceramic. This increased the tensile load-carrying ability of the ceramic,
since to fail the ceramic in tension, the induced compressive forces had to

be overcome first,

In the present effort additional strengthening of the ceramic was achieved
through addition of SiC whiskers to the ceramic, and prestressing the
resultant matrix with continuous filaments., Moreover, methods were
developed for biaxial prestressing of complex configurations, such as
cylinders. Prior to fabricating biaxially prestressed cylinders, analytical
studies were conducted on the factors governing the induced prestress as
well as on the strength of resultant configurations. An extensive test pro-
gram was conducted on the properties of non-prestressed, SiC-whisker-
strengthened ZrO2 and on uniaxially prestressed, SiC-whisker-strengthened
ZrOZ. Data were obtained on flexure and tensile strengths at room and
elevated temperatures, as well as on thermal expansion, thermal shock,
and thermal cycling, The biaxially prestressed cylindrical specimens were
tested in hoop and biaxial tension at room temperature, in hoop tension at

2,000°F, and under high-velocity ballistic-impact loading.

The program was divided into two phases to provide continuity of material

development and evaluation, analytical studies, and biaxial prestressing.

1.1 PHASE I - MATERIAL STRENGTHENING

A literature survey was conducted on strengthening of the ceramic matrix
through addition of whiskers and short, discontinuous fibers. During this
survey, pertinent information was also gathered on the properties of can-
didate reinforcing materials. The matrix selected for experimental work
was chemically consolidated zirconia. Strengthening of ZrO, with graphite
(Thornel) fibers, tungsten fibers, silicon carbide fibers, and sapphire
whiskers was then investigated., The optimum fiber-strengthened matrix
was then characterized at ambient and elevated temperatures to obtain
mechanical properties such as flexure, shear and tensile strengths, and

Young's modulus. In addition, thermal expansion, apparent porosity,



apparent specific gravity, bulk density, and true density were determined.
Analytical tradeoff studies were then conducted on uniaxially prestressed,
whisker-strengthened ZrO,. Prestressed specimens were then designed,
fabricated, and tested at room and elevated temperatures: In addition to

obtaining flexure and tensile strength data, the response of prestressed

specimens to thermal shock and thermal cycling was also investigated,

1.2 PHASE II - BIAXIAL PRESTRESSING

A continuous survey of available literature was conducted for the duration

of the program relative to the current technology on methods of prestressing
ceramic materials. Mechanical and thermal methods of inducing biaxial
prestress in ceramic cylindrical configurations were investigated. The
methods which were considered included shrink-fitting of metal bands onto
ceramic cylinders, circumferential and axial prestressing of cylinders,

and helical winding of cylinders with filaments under high tension. The last
technique was chosen as a means of inducing biaxial prestress in cyliﬁdrical
specimens, In addition, analysis methods for predicting the prestress in,
and the strength of, biaxially prestressed cylinders were developed. Employ-
ing the results of Phase I and the analysis developed in Phase II, tradeoff
studies on factors affecting the strength of cylinders were conducted,
Biaxially prestressed cylinders were then designed, fabricated, and tested
in uniaxial hoop tension and biaxial tension, The uniaxial hoop strength

was obtained at room and elevated temperatures., The experimental data

on the biaxially prestressed cylinders were compared with the theoretically
predicted results, In addition to the above tests, high-velocity ballistic-

impact tests were also performed,

1.3 REFERENCES FOR SECTION 1

1-1. L. B. Greszczuk, and H. Leggett. Development of a System for
Prestressing Brittle Material, Douglas Aircraft Company,
Missile and Space Systems Division, Santa Monica, California,
Final Report, prepared under contract No. NAS 7-429, August 1967.
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Section 2
GENERAIL CONSIDERATIONS OF FIBER-STRENGTHENED CERAMICS

2.1 LITERATURE SURVEY ON FIBER-REINFORCED CERAMICS

Numerous filaments and whiskers exist which can be used to increase the
strength of ceramics. To establish the best manner of strengthening the
ceramics with whiskers and fibers, a literature survey has been conducted
on the most recent work performed in this area. The results of this survey
were used in the selection of several candidate reinforcing materials for
strengthening the chemically consolidated zirconia, The calcia-stabilized
zirconia was phosphate-bonded, and cured at a temperature of 600°F,

Prior to performing any experimental work on fiber-strengthened
zirconia, analytical studies were performed on the required properties of
the fibers to produce crack-free ceramics, on the effect of porosity on the
strength of fiber-strengthened ceramhics, and on the effect of fiber alignment

on the strength of fiber-ceramic composites,

Five factors must be considered when choosing filamentary materials for

strengthening brittle matrixes:

1. Modulus of elasticity.

2. Relationship between the coefficients of thermal expansion of the
constituents.
3. Fiber aspect ratio.

Bonding between fibers and matrix.

5. Maximum temperature at which the fibers can be utilized,

In order for the fibers to carry a significant load, their modulus of elasticity
must be higher than that of the matrix. Harmon (Reference 2-1) has found
that high-strength filament material must have a modulus of elasticity at

least twice that of the matrix,



Harris, et al. (Reference 2-2) state that an inorganic, fiber-reinforced
matrix will not be as brittle as an unreinforced matrix because the fibrous
form of a ceramic material is more resilient than the bulk material.
Furthermore, the phosphate matrix has more plastic behavior than is
normally encountered in ceramic materials (Reference 2-3). For the
ceramics which require high-temperature processing, the coefficient of
thermal expansion of the matrix must be equal to or lower than, that of the
fiber. This criterion is an important consideration during cooling of the
composite. If the coefficient of thermal expansion of the ceramic is greater
than that of the fiber, cracking of the ceramic may take place upon cooling

of the composite,

The aspect ratio (length of the fiber divided by the fiber diameter) for

an inorganic composite should be greater than 10:1 (Reference 2-1), This
ratio is required to be large enough to minimize the shear stresses between
the fiber and the matrix at the ends of the fiber, and to develop the load-
carrying ability of the fiber (Reference 2-4).

Transfer of stress from matrix to fiber can occur only if there is a bond
between the two components, Harris, et al. (Reference 2-5) state that a
poor fiber-matrix bond results in low shear resistance. Heating of ceramic
composite materials develops shear stresses that can cause failure of the
fiber -matrix bond. FEfforts to obtain chemical bonds may be limited by
reactions that destroy the fibrous structure. Ebner (Reference 2-6) found
that silicon carbide and graphite were more resistant to attack by fluorine
and hydrogen fluoride at high temperatures than other refractories, such
as alumina or zirconia. The majority of the applications for ceramics as
load-bearing elements of systems will require oxidation resistance, Wood-
burn and Lynch (Reference 2-7) have demonstrated that phosphates provide
oxidation resistance to carbon-containing materials. Hence, filamentary
materials made of silicon carbide or graphite should not be limited by
reactions with the matrix, but there is the possibility that alumina fibers

may be adversely affected by the matrix.



Fibrous materials are available in polycrystalline form, referred to as
fibers, and as single crystals, referred to as whiskers, The greater
strength of the whiskers versus that of fibers is because of the absence of
grain boundaries, dislocations, impurities, imperfections, and voids

(Reference 2-8),

The literature on inorganic composites reinforced with fibers is limited,
and the majority of the work is on metal matrices. This literature survey

only considered studies utilizing ceramic matrixes,

R. Singleton, D. Miller, and A, Wallace (Reference 2-9) reinforced mullite
(2 SiOz' 3 A1203) with 20-volume-percent tungsten or molybdenum wire.
The wire was 50 microns in diamter, cut into 1, 500-micron lengths, thus
giving a length-to-diameter ratio (£/d) of 30, The coefficient of thermal
expansion from room temperature to 1, 832°F for tungsten, molybdenum,
and mullite were 2.55, 3.33 and 2.89 x 10_6 in. /in. per °F, respectively.
The composite mixture was hot-pressed in vacuum to 98 percent of the
theoretical density. The mullite was formed from silica and alumina. At
room temperature, the average flexure strength for unreinforced mullite
was 12,000 psi, for a molybdenum-mullite system 22, 700 psi, and for a

tungsten-mullite system 23, 400 psi,

Harris, Sales, and Corbett (Reference 2-10) found that the addition of silicon
carbide whiskers to the silica matrix of a filament-wound inorganic composite
did not provide an increase in tensile strength; however, they found that the

shear strength increased 122 percent.

Results of bending tests performed by Bortz (Reference 2-11) on a ceramic
composite fabricated with 20-volume-percent molybdenum wire and 80-
volume -percent petalite (LiZO- AIZZO3‘ 8S'102) revealed that the composite
was 50 percent stronger than the unreinforced petalite body. The ceramic
had a coefficient of thermal expansion of 0.11 x 10_6 in. /in.®F. The

modulus of elasticity of the ceramic was 18 x 106 psi, while that of metal was
46 x 106 psi. The petalite body was 90-weight-percent petalite and 10-weight-

percent kaolin. The petalite was ball milled with the kaolin, 2-mil-diameter



by 1/8-inch-long molybdenum wires were added to the batch in the ball mill,
following which milling was continued. The mixture was hot pressed at
2,408°F and at 3, 000 psi. The results of the flexure test are given in
Figure 2-1, where it may be noted that the area under the stress-strain
curve for the reinforced body was 400 percent greater than the unreinforced

body.

Tinklepaugh, Goss, and Hoskyns (Reference 2-12) studied the flexural prop-
erties of electrical porcelain-tungsten fiber systems. The body was hot
pressed at a temperature of 2,360°F. The thermal expansion of the ceramic
was up to 30 percent greater than that of tungsten at temperatures above
600°F. The ceramic failed at the same load whether it was reinforced or
not, but the fibers held the composite together as the load was increased.
The ultimate load at which the composite failed was much higher than the
load required to cause failures of the ceramic. Failure of the composite
occurred when the fibers pulled out. One composite containing 20-volume-
percent chopped tungsten fibers failed at a flexure stress of 28, 460 psi; one
without reinforcement failed at a flexure stress of 4, 780 psi. The tungsten
wires were 0, 002-inch diameter by 0.125-inch long. Some additional ex-
perimental results obtained from Reference 2-12 are shown in Figure 2-2,
where the flexure strength of tungsten-fiber-reinforced ceramic is plotted

as a function of fiber-volume fraction.

In conjunction with the work on fiber-reinforced ceramics, mention should
also be made of the experimental work of Fisher and Hodson (Reference 2-13).

Their work involved making tungsten-~fiber~-reinforced SiC, TaC, B, C, TiC,

HfC and ZrC. These composites were intended for nozzle applicati;lns, and
were produc.d by hot pressing. Of the six carbides listed above, SiC, TaC
and B4C were found to react extensively with the metal phase and, therefore,
were eliminated as candidate materials for nozzles. The remaining three
carbides were found to form a good metallurgical bond with the tungsten
fibers. It was found that although the fibers react with the ceramics, detri-

mental interactions could be avoided by controlling the processing conditions,
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Figure 2-2. Flexure Strength of Fiber Strengthened Ceramic (Ref 2-12)
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Levy (Reference 2-14) points out that the factors which appear to restrict

the reinforcing of ceramics with refractory metals are:

Reactions between metal and ceramic phase.
2. Contamination of either phase by foreign elements.

Lack of sintering of ceramic because of presence of the metal

during heating.
The work of Baskin, Arenberg and Handwerk (Reference 2-15) involved
reinforcing thoria with fibers of mild steel, stainless steel 430, molybde-
nurm, niobium, Zircaloy-2, and zirconium. The compacts were produced
by hot pressing at a temperature of 2, 732°F at a pressure of 2,500 psi. The
samples were subjected to thermal shock test which consisted of heating
the specimens to 1, 832°F and quenching in mercury. Of the various com-
posites tested, molybdenum-fiber-reinforced thoria exhibited the best
resistance to repeated thermal shock. It was also found that thin fibers
were more effective than thicker ones. The mechanism of improving thermal
cycling behavior was primarily a mechanical one, rather than a modification
of physical properties. The presence of ductile metal fibers served both as
a crack-inducing and crack-confining mechanism which served to prevent
catastrophic failure. It is notedyivn Reference 2-15 that the micro and
macro cracks in the matrix ceramic, if properly controlled by a strong metal
reinforcement network, are actually an advantage. The advantages attri-
butable to the presence of cracks are as follows (Reference 2-14):

1. High residual stresses induced in the ceramic during processing
are relieved.

2. High stresses generated by thermal gradients acting over long
distances are prevented.

3. Crack sensitivity of the body is reduced by the presence of a
multitude of already built-in cracks. The existing cracks essen-
tially stop crack propagation.

4, The modulus of elasticity is reduced.

5. The ability of the composite to move elastically or plastically
under the influence of the applied stresses is made possible
by the segmenting of the ceramic blocks,

»
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The mechanism of crack formation in fiber-reinforced ceramics is further
discussed by Swica, Hoskyns, Goss, Connor, and Tinklepaugh (Reference

2-16), and by Levinson (Reference 2-17).

In addition to the work contained in the references cited above, a compre-
hensive review of the work on fiber-strengthened ceramics, and reinforced
ceramics in general, is given by Levy (Reference 2-14), Boland and Walton
(Reference 2~18), Walton and Corbett (Reference 2-19), and Carroll-
Porczynski (Reference 2-20). The first reference is of particular impor-
tance to the present work, for it is the only work which describes chemically
bonded ceramics. Most of the other references deal with hot-pressed

materials.

In Reference 2-14, Levy describes a concept for producing a reinforced
ceramic, whereby an aluminum phosphate-bonded alumina is reinforced with
stainless steel corrugated strip. Such a composite was intended for ramjet
combustion chamber applications. An extension of this concept to wing lead-
ing edge configurations has been made by substituting a molybdenum wire
mesh precoated with a pack cementation covering for the corrugated stain-
less steel strip. These components have successfully withstood several
20-minute cycles of exposure up to 3, 500°F. The above concept was further
extended to higher operating temperature through the use of phosphate-bonded
zirconia as the matrix material. Chromia was added to zirconia to increase
the workability and emittance of the material. The resultant ceramic matrix
was incorporated into a reinforced-ceramic coating system which consisted
of éorrugated strip-reinforcement of molybdenum alloy (0. 010-inch thick by
0.125-inch wide), resistance welded to a base metal substrate of 0.5 per-
cent Ti molybdenum alloy sheet. The surfaces of the molybdenum were
plasma-sprayed with chromium to facilitate resistance welding, and to
protect the material against oxidation. The welded assembly was covered
with a vitrified coating for the purpose of further increasing the oxidation
resistance of molybdenum. According to Levy (Reference 2-14), the result-
ant system exhibited excellent resistance to thermal shock, and withstood a
steep thermal gradient through its thickness without any apparent damage to

the composite.
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Additional references on fiber-strengthened and reinforced ceramics are

given in the Bibliography.

2.2 CANDIDATE FIBER AND WHISKER REINFORCING

MATERIALS AND THEIR PROPERTIES
The physical and thermophysical properties of various fibers and whiskers,
which appear as potential candidates for reinforcing the chemically bonded '
zirconia, are given in Table 2-1., Table 2-2 shows the rating of the various
fibers and whiskers in terms of relative potential. This parameter takes
into account the filament tensile strength, density, and the cost of the fibers
(or whiskers), which dictates the practicability of using a particular reinforc-
ing material. For comparison purposes, stainless steel is also included in

Table 2-2.

From the results given in Table 2-2, it is quite obvious that silicon carbide
whiskers have the highest relative potential. Carbon/graphite and tungsten
appear quite attractive for elevated temperature applications. Alumina
whiskers appear promising because of their high strength. The materials
cited above have coefficients of thermal expansion sufficiently close to those
of chemically bonded zirconia so that cracking of the matrix would be

minimized.

2.3 ANALYTICAL STUDIES ON FIBER-STRENGTHENED CERAMICS

Analytical studies were conducted to gain an understanding of factors affect-
ing the strength of fiber-reinforced ceramics. These studies included
determination of the required properties of fibers to minimize, or possibly
avoid, cracking of the ceramic; the strength of fiber-reinforced ceramic as
affected by porosity; the relationship between porosity and fiber-volume

fraction, and the effect of fiber alignment.

2.3.1 Required Fiber Properties for a Crack-Free Ceramic

When a ceramic matrix, such as chemically bonded zirconia, is reinforced
with short fibers or whiskers, and the composite is then subjected to an ele-

vated temperature, cracking of the ceramic will take place if a proper

13
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relationship does not exist between the elastic properties and coefficients

of thermal expansion of the two materials. The optimum relationship between
the properties of the constituents can be established by considering the prob-
lem of multiaxial thermal residual stresses in a composite consisting of a
solid cylinder imbedded in a material with different elastic properties

(Figure 2-3).

For small fiber-volume fractions of the reinforcements, the interaction of
stresses from adjacent filaments will be negligible; therefore, the solution
of the problem will be similar to that for two, thick, concentric cylinders.
This solution is similar to that given in Reference 2-28, except that the

thermal effects are included here.

For a thick-walled cylinder subjected to internal and external pressures, as
well as axial stress, and a temperature AT (Figure 2-4), the solution for

the radial displacement, u, and the axial strain, € s is

2 2
) 1- Vo [ Pa? -pbb - 1+ Vi a,2b2 P, Py
“m T TE 2 2 E T 2 2

b™-a m b™-a

m
o szr + cvaTr (2-1)

2 2
paa. - pbb

1
o = F [O'Zm - 2vm( 5 > ) ]+ ozmATr (2-2)
m b™ - a

where v is Poisson's ratio, E is the modulus of elasticity, o is the coefficient
of thermal expansion, and AT is the difference between initial, TO, and

final, Tf, temperatures,
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The problem under consideration (Figure 2-3) can now be solved with the
aid of the above equations, if appropriate equations of equilibrium and

compatibility are established. These equations require that at

\
r=c,u =u
and also that
TS %o T Ty TP > (2-3)
‘2c € of
2 2
5, B2-c?) = o e
J

where p is the interface pressure, and the subscripts ¢ and f denote the
ceramic and filaments, respectively. From Equations 2-1 and 2-2 the

radial displacement and the axial strain for the fiber at r = ¢ (see Figure 2-3)

are

L-vy Vg ]

Ue = = (—p)c—-E- (rzfc+ozfATc

f £
) (2-4)

1 T

o TE, [‘Tzf‘2 Vs ('p)] Toopal
o

Similarily, the radial displacement for the ceramic at r = ¢, and also the

axial strain, is:

N
l—vc c 2 1+ Ve Cbzp Ve
u_ = P V¢ + ( > — R I
c Ec(bz—cz) E bZ_CZ Ec zc' T+ aCATc
7 (2-5)

2
L pc
e T E o‘ZC-Z Ve (b2—C2> + aCAT
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Combining Equations 2-3, 2-4, and 2-5, and solving for p and 5 yields

(a; - ac)EfEc(l-k)AT[(H v (1-K)E _+(1+ vc)kEf]

P :{Ef[(1+k)+(l-k) vc]+ (1-v)(1-K)E l [Ec(l-k)+Efk] -2 [vf(l-.k)EC-~I- vc‘kEf]z
(2-6)

o —{ (- o )E_E(1-k)AT + Zp[vf(l—k)EC+ vckEf]} o)
Zf - - - -
EC(I—k) + Efk
and, finally, at r = ¢, the stresses are
_ k (2-8)
Toc = 7 Upf (1-k)
- - (2-9)
rc  %pf” 7P
where, for convenience, k denotes fiber-volume fraction
Kk = TFCZ (2-10)
- 2
wh
The circumferential stress in the ceramic of r = ¢ is
1+k (2-11)

T9e TR P

Equations 2-6 through 2-11 may be used to establish the properties required
of the fibers to prevent the ceramic cracking when it is cooled from the
processing temperature to room temperature, or heated to a use tempera-

ture greater than the processing temperature,

It is apparent from the above equations that the stresses caused by differences
in the coefficients of thermal expansion of the two materials can be reduced
by minimizing the difference (ozf— ac). Indeed, these stresses will be

identically equal to zero at any tempera'ture, if (o~ ac) at that temperature

f
is equal to zero. If the properties of the ceramic material are known, it
is possible to solve by trial and error for the properties of the fibers to

attain a crack-free composite. Although this is a straightforward process,
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Figure 2-5. Canditions Under Which Ceramic Cracking Occurs
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it is rather cumbersome in view of the complexity of the equations for the
residual thermal stresses. The procedure can, however, be simplified by
making some simplifying assumptions.

2.3.2 Required Fiber Properties for ZrO, Matrix

2

Since, in the present concept, the volume fraction of the fibers will be

small, say, k< +20 percent, the fibers will be far apart. For this condition,
it is justifiable to assume that the stresses around the fiber are identical to
those that would exist around a single fiber imbedded in an infinite matrix.
To obtain the stresses corresponding to this condition, it is necessary to let
b — «, which essentially requires that k — 0. Setting k = 0, and solving for
T and "5’ yields

.. - (a/f-afc) EfEC(1+Vf) AT
2
(14 v )E, + (1- v)E_-2voE_

Oc rc (2-12)

Since the matrix (chemically bonded zirconia) has been selected and its
properties @, Ec’ and o are known as a function of temperature
(Reference 2-28), one can solve for the fiber properties, Ef and ozf, so that
no cracking of the reinforced ceramic takes place when it is subjected to
elevated temperatures. In view of the lack of information on the variation
of Vs and Ve with temperature, it will be assumed that these properties

remain constant with temperature.

Since the compressive strength of ceramics is generally much higher than
their tensile strength, the tensile residual thermal stress will be the critical
parameter. From KEquation 2-12 it is quite obvious that ceramic cracking
will occur under four conditions. These are illustrated in Figure 2-5. For
the case of a weak bond between the fibers and ceramic, failure at the inter-
face will occur, rather than circumferential cracking. Cracking under any
of the four conditions shown in Figure 2-5 can be avoided if a reinforcement
with appropriate properties is selected. These properties can be obtained

from the following equation:

2
(1+ vC)Ef-i—(l- vf)EC-Z Ve Ec

f c c (1+ vf)EfECAT

(2-13)
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It is apparent from the above equation that the bounds for the coefficient of
thermal expansion of the fiber can be established to prevent ceramic crack-
ing. Typical results are illustrated in Figures2-6and2-7 wherein are shown
the bounds within which ¢ has to fall in order to prevent cracking of the
chemically bonded zirconia. Properties of zirconia obtained from flexure
(Reference 2-28) were used to arrive at the results shown in Figure 2-6,
while Figure 2-7 is based on properties of zirconia obtained from tension
tests (Reference 2-28). Since the bounds for @, are rather insensitive to Ef
(Figure 2-6), Figure 2-7 shows only the results for the case when Ef >> EC,

Thus, to obtain a crack-free, fiber-reinforced ceramic, @ at any tempera-

ture has to fall within the shaded area of the curve.

2.3.3 Tailor-Made Fiber Properties

In the previous section it was established that the strength of fiber-
reinforced ceramics is influenced strongly by the coefficient of thermal
expansion of the fibers. If fibers cannot be found whose coefficients of
thermal expansion fall within the allowable bounds illustrated in Figures 2-6
and 2-7, the fibers can be tailor made by adding a layer of another material.
The properties of tailor-made fibers may be made to fall within the required
bounds by using such a procedure. The expression for the coefficient of
thermal expansion of the coated fibers may readily be derived from
equations given in Section 2.3.1. The thermal properties of the

coated fibers will depend on the coefficients of thermal expansion and
Young's moduli of the fibers and the coating, on Poisson's ratios of the
constituents, and on their volume fractions. Some typical results are
shown in Figure 2-8, which also shows the coefficient of thermal expansion,
in the radial direction, of a composite fiber (coated fiber) as a function of
the coefficient of thermal expansion of the coating material, and the volume
fraction of the constituents. Of the various constituent properties that
influence the coefficient of thermal expansion of a composite fiber, the coefficient
of thermal expansion of the coating material has the greatest influence.
Varying the modulus of elasticity of the coating, or its Poisson's ratio, does
not have much influence on the coefficient of thermal expansion of the

composite fiber.
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2.3.4 Effect of Porosity on the Strength of Fiber-Reinforced Ceramics

The experimental work of Swica, Hoskyns, Goss, Connor, and Tinklepaugh
(Reference 2-16) on the strength of tungsten-fiber-reinforced ceramics has
shown that the strength of composites does not increase continuously with
increasing fiber content, but reaches an optimum value at a rather low fiber
volume (=30 percent). Composites with volume fractions higher than this
value showed marked decreases in strength. Similar results were found in
some of the preliminary in-house work conducted at MDAC-WD on the
strength of chemically bonded zirconia reinforced with silicon carbide
whiskers. Preliminary theoretical studies in this area, based in part on the
work of Reference 2-29, indicate that this behavior can be explained by
accounting for porosity. As the fiber volume fraction increases, so does
the porosity (Reference 2-12). There are two types of porosity: (1) pores
which occupy volume and can be measured, and (2) zero-volume pores
consisting of fibers which have not formed a bond with the ceramic, and
therefore act as pores. It is reasonable to expect that as the fiber volume
fraction increases, so does the percent of unbonded fibers. Assuming that
the increase in volume fraction of pores is proportional to the increase in
the volume fraction of fibers, the following equation has been established for

the tensile strength of fiber-reinforced ceramic containing pores:
T - _wybnk 2/3][ _ ] _
[1 4( _ f) ok, + o (1-k) (2-14)

where o is the strength of the fibers, o is the strength of the ceramic, kf
is the fiber volume fraction, n is the ratio of the volume of pores divided by
the fiber volume fraction (n = kp/kf) and B is a parameter which accounts
for nonalignment of the fibers (or their random distribution), strength
degradation of the fibers due to fabrication, presence of fibers shorter than
the critical length, and other similar factors. In arrivihg at the above
equation it was assumed that the pores are spherical (Reference 2-29) and
that the aspect ratio of most of the fibers is large enough so that they act as
continuous fibers. Typical results based on Equation 2-14 and experimental

results obtained from Reference 2-12 are shown in Figure 2-9. Strength of
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£ = 500 x 103 psi

(Reference 2-28). Strength of the ceramic was taken as o, = 5,000 psi

the 2-mil-diameter tungsten fibers was taken as ¢

(Reference 2-12), while the f -factor was assumed as B = 0.5. Itis apparent
from Figure 2-9 that excellent agreement is obtained between experiment and
theory if one takes N =1.0.. Moreover, it is also apparent that for a given
fiber volume fraction, higher increases in the composite strength can be

achieved by decreasing the porosity, i.e., decreasingn.

2.3.5 Effect of Fiber Alignment on Composite Strength

When filament strength is much greater than the strength of the matrix,
composite strength is strongly influenced by the direction of the filament
orientation with respect to the applied load. Figure 2-10 shows the strength
of tungsten-reinforced-zirconia as a function of the filament orientation
angle to the applied load. These results are based on the theory given in
Reference 2-30. In arriving at these results, it was assumed that the aspect
ratio, £/d, of the chopped fibers is sufficiently great so that the load can be
transferred from the matrix to the fiber by shear. This assumption means
the fiber acts as a continuous filament and the theory used for continuous
filaments then applies to chopped fibers. As indicated in Figure 2-10, an
angle of 5 degrees between reinforcement direction and direction of the
applied load causes a reduction of over 50 percent in the allowable strength
of the composite containing a 0.30-fiber-volume fraction. Therefore, for
unidirectional loads, it is desirable to orient the filaments in the direction
of the applied load. Also, it can be seen from Figure 2-10 that for
bidirectional loading it is much better to orient a percentage of filaments in
the direction of each of the applied loads, according to the ratio of the
applied loads, rather than orient all the filaments at some angle to the
applied loads. For multiaxial loading, a random fiber array may be

desirable.

In order to estimate the strength of a composite containing a random
distribution of fibers, a multilayer laminate model is considered. The
fiber orientation in each layer is assumed to be the same; however, it is

assumed to differ from layer to layer. If the thickness of each layer
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is allowed to approach zero, a sheet is obtained with a variable fiber
distribution in the plane of the sheet. Moreover, it is also assumed that
all layers of the composite exhibit perfectly elastic behavior up to failure.
When a particular layer of a composite fails, the load carried by that layer
is assumed to be transferred to the remaining, unfailed layers. Figure 2-11
shows the theoretically predicted stress-strain curve for such a multi-
directional composite. The encircled numbers shown in Figure 2-11
denote the composite stresses at which various layers fail. Thus, the
first layer fails when the composite stress reaches a value of 5, 700 psi.
Once the first layer fails, failure of layers 2, 3, and 4 is caused at a
somewhat lower stress. Failure of the first four layers does not cause
failure in layer 5, and the applied composite stress may be increased from
5,700 psi to 6, 100 psi before layer 5 fails. Similarily, layer 6 fails at a
composite stress of 8, 200 psi, and layer 7 at a composite stress of

17, 600 psi.

Results shown in Figure 2-11 are typical to those expected for the stress-
strain behavior of a composite reinforced with randomly distributed discon-
tinuous fibers. The effect of progressive layer failures on Young's modulus

of a composite is readily apparent from Figure 2-11.
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PRECEDING PAGE BLANK NOT FILMEB:

Section 3
EXPERIMENTAL STUDIES ON WHISKER-REINFORCED CERAMICS

An experimental study was conducted of the strengthening of cast, chemically
consolidated zirconia by the incorporation of filamentary materials, such as
whiskers and short, discontinuous fibers. The design of this study was based
on the literature survey, review of candidate filamentary materials, and
analysis of fiber strengthening of ceramics reported in Section 2. 0. Four
reinforcing materials were selected: tungsten wire, Thornel 40 fibers, sili-

con carbide whiskers, and sapphire whiskers.

Properties of the reinforcing materials were obtained experimentally or from
vendor data. The effects of monofluorophosphoric acid on candidate reinforc-

ing fibers were examined.

Preliminary qualitative studies indicated that the addition of filamentary
materials required larger than normal quantities of liquid. The chemical
reactions for consolidation and curing cycles were reviewed to determine the
effects of using increased amounts of acid. It was found that the curing cycle
established in Reference 3-1 could not accommodate increased evolution of
product gases. An experimental program performed on flexure specimens
indicated that dilution with nonpolar agents would not be successful, but that

increased amounts of acid could be used to obtain castable mixes.

The formulation incorporating reinforcing fibers and whiskers into a mix of
32 parts by weight of monofiuorophosphoric acid and 100 parts of zirconia
was used to prepare test specimens to select one fiber type and one optimum
fiber content. This selection was made from flexure strength data obtained at

room temperature and at 2, 000°F,

Addition of 7. 4-weight-percent of silicon carbide whiskers to the ceramic
was found to yield a matrix with an optimum flexure strength. A character-
ization of the optimum-whisker-reinforced matrix was made by determining

the tensile flexure and shear properties from 70°F to 2, 000°F.
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3.1 PROPERTIES OF REINFORCING MATERIALS

Vendor data were utilized for work performed with graphite (Thornel 40)
fibers, and silicon carbide and sapphire whiskers. The properties of the
l1-mil-diameter tungsten wire were measured experimentally. In addition,
the effect of the monofluorophosphoric acid on candidate reinforcing mate-

rials was investigated,

3.1.1 Description of Reinforcing Materials and their Properties

Four types of reinforcing materials were used: graphite (Thornel 40) fibers,
silicon carbide whiskers, sapphire whiskers, and tungsten fibers, The

matrix used was chemically bonded zirconia.

Graphite Fibers (Thornel 40)

Continuous fibers of Thornel 40 were obtained from Union Carbide Company.
These were chopped into random lengths of 0. 125 inch or less. The proper-
ties of Thornel 40, as given in Reference 3-2, are as follows: 250, 000 psi,
tensile strength (on l-inch gage length); 40 x 106 psi modulus of elasticity;
0.7 percent elongation at failure; 0. 0564 1b/in.3 density; all data are based

on an equivalent diameter of 6. 9 microns.

Silicon Carbide Whiske’rs

The silicon carbide whiskers were obtained from Carborundum Company,
Niagara Falls, New York. The properties as given on the Carborundum
Technical Data Sheet (Reference 3-3) are as follows: tensile strength of

3to 10 x 106 psi; modulus of elasticity of approximately 70 x 106 psi; den-
sity of 0. 115 1b/in.3; whisker diameter range of 0.5 to 3.0 microns; and
whisker length range of 10 to 300 microns. At least 50 percent of the
whiskers are said to exceed the length of 40 microns, and at least 20 percent

of the whiskers are said to be longer than 100 microns.

Sapphire Whiskers

Type 3B sapphire whiskers were obtained from Thermokinetic Fibers, Inc.,

Nutley, New Jersey. Properties of the whiskers as given on the
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Thermo /kinetic Product Data Sheet are as follows: tensile strength of

0.2 to 3.5x 106 psi; modulus of elasticity of 60 to 150 x 106 psi; density of
approximately 0. 146 1b/in. 3; whisker diameter range of 1 to 30 microns
(nominal diameter of 18 microns); and a whisker length range of 180 to

2, 500 microns,

Tungsten Fibers

Continuous 1-mil-diameter tungsten wire was obtained from General Electric
Company, Cleveland, Ohio. The continuous tungsten fibers were cut into

short lengths using the procedure outlined below.

1. A 13-inch-diameter cylindrical mandrel was cleaned and a layer of
mylar film was taped to the mandrel surface,

2. The mandrel was mounted in the laboratory filament winding
machine. The machine was set up to wind the filament in the cir-
cumferential mode with a carriage advance of about 0. 002 inch per
revolution.

3. A reel of 1-mil-diameter tungsten wire was mounted on the carriage.
A teflon guide eye was mounted in close proximity to the reel in

order to guide the wire to the mandrel. .

4, With a spindle speed of about 30 rpm, the wire was wound continu-
ously over a 24-inch length of the mandrel. Spacing between adjacent
wires was about 0. 002 inch.

5. Approximately one quart of a special water-soluble resin binder was
mixed to the following formulation:

1 part by weight Gelvatol 20-30 BP (PVA)
1 part by weight methyl alcohol
2 parts by weight tap water

PVA powder was added slowly to the water and alcohol mix until the
PVA was completely dissolved.

This resin was brush-applied to the tungsten windings.
The mandrel and windings received a 16-hour heating cycle at 225°F.

The tungsten wire laminate was cut longitudinally and removed from
the mandrel. '

9. A paper cutter was used to cut 1/8-inch strips approximately
24 inches in length.

10. The resin binder was dissolved from the strips with tap water.
Several water rinsings were used to assure complete removal of
the resin binder.
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Properties of 1-Mil Tungsten Wire

Six tensile tests were performed to determine the stress-strain curve and the
strength of the 1-mil tungsten filament. Average results are shown in Fig-
ure 3-1. The tests were conducted with an Instron tester. An x-y plotter was
used to record load versus crosshead travel. Test lengths of 10, 15, and 20
inches were used with two determinations for each length. Elongation was
determined by the head travel of the grips. To verify Young's modulus data
obtained by the above method, an additional series of four tests were run in
which a lightweight Instron extensometer with 1-inch gage length was attached
to the wire and the deflection was recorded. These tests verified the results
obtained by the previous method. Table 3-1 contains the strength and modulus
of elasticity values obtained from each test. The average ultimate tensile
strength and average Young's modulus were found to be 428 x 103 psi and
54.8 x 10° psi, respectively. The density of the tungsten fiber was

0. 697 1b/in.3,

3.1. 2 Solubility of the Candidate Reinforcing Fibers in
Monofluorophosphoric Acid '

Acid solubility observations were made of the candidate reinforcing fibers in
monofluorophosphoric acid. The acid solubility tests were performed at room
temperature and at 2809F. Silicon carbide whiskers, 100 to 300 microns in
length, Thornel 40, and sapphire fibers were not affected by this treatment.
One-mil continuous tungsten wire dissolved slowly at the temperature of
280°F, at a rate of 0. 6 percent/hour. The tungsten, after exposure, exhibited
a black coating. X-ray crystallographic analysis did not reveal the composi-

tion. Microscopic observations on the reinforcement solubility are shown in

Table 3-2.

3.2 PROCESSING AND PROPERTIES OF CHEMICALLY BONDED
ZIRCONIA AND PRELIMINARY MATERIAL DEVELOPMENT WORK
In order to obtain a whisker-reinforced castable ceramic, studies were per-
formed on the effect of larger than normal acid content and various nonpolar
liquid agents on the strength of the matrix. Studies on the curing cycle of the

resultant matrix were also performed.
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Table 3-1

EXPERIMENTAL MECHANICAL PROPERTIES OF
TUNGSTEN FILAMENTS

Gage Ultimate Young's Yield Strength
Test Length Strength Moduylus 2% Offset
Number (in.) (KSI) (x 10-6 PSI) (KSI)
1 15 423 58.7 370
2 15 433 57.6 376
3 10 433 52.1 377
4 10 431 53.1 375
5 20 421 55.1 375
6 20 427 56.6 370
7 1 Not 53.6 Not
Obtained Obtained
8% 1 Not 53 Not
Obtained Obtained
9k 1 Not 52.7 Not
Obtained Obtained
10% 1 Not 55.3 Not
Obtained Obtained

#Denotes tests in which a lightweight Instron extensometer was used to
record deflection instead of measuring crosshead travel as in Tests 1
through 6.
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3.2.1 Properties of the Constituents Used in Preparing Zr0,

The calcia-stabilized zirconia powder was obtained from Norton Company,
Worceste;, Massachusetts; the monofluorophosphoric acid was obtained
from Ozark-Mahoning Company, Tulsa, Oklahoma., The amount of calcia
present in the zirconia powder has a decided effect on the strength and
expansion of sintered or chemically consolidated zirconia bodies, Calcia-
stabilized zirconia, without consolidation additives, does not undergo an
allotropic transformation because it has been stabilized in the cubic form.
In order to help characterize the material, the weight-percent of calcia

present was determined.

An x-ray spectrograph sample was prepared to determine the weight by
percent of calcia present in the powder (-325 mesh powders were used for
the determinations). Synthetic standards were prepared in the following
manner: calculated amounts of calcium sulfate dihydrate were weighed and
mixed with sufficient zirconium sulfate to produce a 1, 000-gm sample,
Three standards were prepared containing 1,00 percent, 3,00 percent, and
5.00 percent calcium, The standards were mixed with 1, 500 mg lithium

tetraborate, pelletized and analyzed.

The goniometer was positioned at 29° Bragg angle corresponding to the

K, C, line of calcium, and the intensities were measured for the standard.,
The chromium target tube, a standard analyzing crystal (PET), and a

helium patch were used during all measurements., Three, 100-second counts
were taken for each standard, Intensities were plotted against calcium
content, The sample was drawn from this blend for analysis., This sample
was mixed with 1, 500 mg lithium tetraborate, pelletized and analyzed in
triplicate, as previously described. The -325-mesh Zr0, had a calcia
content of 5,95 to 6,39 percent, The -70-to+200-mesh zirconia had a calcia
content varying from I to 4 percent, verified by spectrographic analysis. A

second sample obtained from the Norton Company had only 4-percent calcia.
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3.2.2 Curing Cycle and Chemical Reactions for Consolidation of ZrO;

In order to conduct the material development program it was necessary to
review the chemical reactions involved in the consolidation of the ceramic

matrix (Reference 3-1).

The chemical consolidation of ZrO3 is produced by reaction with monofluoro-
phosphoric acid (H,PO3F). The reaction, as determined by differential
thermal analysis and substantiated by X-ray diffraction studies, consists
essentially of two phases. Zirconium tetrafluoride (ZrF4) is formed on the
surface of each particle of ZrO,, accompanied by a subsequent reaction with
the phosphate radical to produce the bonding material, zirconium pyro-
phosphate (ZrP204).

Although the formula for monofluorophosphoric acid is represented as
HpPO3F, the as-received acid consists of 70 percent by weight of HoPO3F
and 30 percent by weight of equimolar solutions of bifluorophosphoric acid
(HPO,F)) and orthophosphoric acid (H3PO4). The reaction with zirconia is
shown in Equation 3-1.

1.4 HZPO3F + 0.3 HPOZF2 + 0.3 I—I::,,PO4

+ Z1r0O

5 ZrPZO.7 + 2 HF + HZO (3-1)

The stepwise reaction, as determined by differential thermal analysis, is
shown in Equations 3-2 through 3-8. The initial reaction is the hydrolysis
of the acid.

2.8 HZPO3F + 2.8 I—IZO—>2.8 HF + 2.8 I—I?)PO4 (3-2)
0.6HP02F2+ I.ZHZO—*I.ZHF-!- 0.6 H3PO4 (3-3)
0.6 H3PO4———>O. 6 H3PO4 (3-4)

2.8 H2P03F + 0.6 HPOZF2 + 0.6 H3PO4
+4HZO—-——-4. 0 HF + 4.0 H3PO4 (3-5)
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The H31304 dissociates to form H4PZO7, as shown in Equation (3-6)

4H,PO 2H,P,0, + 2H,0 (3-6)

4 2

The HF, formed from hydrolysis of the fluorophosphate acids, reacts with
ZrOZ to form ZrF4, as shown in Equation (3-7)

4HFEF + ZrO2 ZrF4 + ZHZO (3-7)
Only 1 mole of the H4PZO7 is required to react with the 1 mole of ZrF4
formed from the reactions of zirconia with the 4 moles of HF as shown in
Equation (3-8). The excess HF formed upon reaction of ZrF4 with the
I—I4PZO7 is available for further reaction with ZrO2 and, consequently, to
react with the additional moles of H4PZO7. The excess HF is vaporized during
processing at 500°F to 600°F after all available H,P,0. is reacted.

ZrF4 + H4PZO7

AHF + ZrPZO7 (3-8)

A typical differential thermal analysis thermogram of a mixture of HZPO3F
and ZrO2 is shown in Figure 3-2. The endothermic peak initiating at 167°F
is consistent with those occurring for mixtures of HF and ZrOZ. This peak
is attributed to the volatilization of HF and/or water vapor. The endo-
thermic peak occurring at approximately 212°F represents the conversion
cof orthophosphoric acid (H3PO4) to pyrophosphoric acid (H,P,0.,). The

4”277
intense exothermic reaction at 302°F indicates the formation of ZrP_ O
o 277
and ZrF, . 3H,0. The presence of these compounds has been substantiated
by X-ray diffraction studies, thermogravimetric analysis, and stoichiometric

studies (Reference 3-1), The endothermic peak occurring at approximately
TN AN

230°C (4660F) indicates conversion of Zr]?‘4 . 3HZO to ZrF4 . HZO'
The endothermic peak/erring in the neighborhood of 526°F indicates
decomposition of ZrF4 . HZO‘

When more acid is used, more gases (HF and HZO) will have to be evolved,

which presents curing problems, The chemical reaction as shown below

ZrP_O_ + 2HF]+ H oI

1.4 H,PO 5

> 3F+0,3HPO

F2+O.3H3PO4+ZI'O2 20~

2
was used to determine the quantities of gas evolved as shown in Table 3-3.
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Figure 3-2. Differential Thermal Analysis of H,PO5 F+Zr04

Table 3-3
REACTION PRODUCTS OF CHEMICALLY CONSOLIDATED ZIRCONIA

Parts HZPOSF/ Combines with Retain Parts Forms Parts
100 Parts ZrO Parts ZrO ZrO Parts ZrP_O H.O & HF
2 2 2 27 2
16 9.8 90.2 21.2 4,6
32 19,7 80.3 42,4 9,3
48 29,5 70.5 63. 6 13.9

Two batches of monofluorphosphoric acid with specific gravities of 1. 80 and
1. 72 were obtained from the vendor (Ozark-Mahoning Company). The lower
liquid density results from a larger amount of bifluorophosphoric acid than
shown in chemical Equation 3-1. An examination of chemical Equations 3-2
and 3-3 reveals that increases in bifluorophosphoric acid result in increases

of HF.
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3.2.3 Preliminary Material Development

During the first year of this effort (Reference 3-1) castable, chemically
consolidated zirconia was selected as the final matrix on the basis of tradeoff
studies and experimental work. In that work, the strength of the matrix at
room temperature was increased consistent with good casting practices. In
the current work an attempt was made to further increase the strength by
incorporating filamentary materials into the matrix. Preliminary qualitative
studies indicated: (1) that the addition of filamentary materials required
larger quantities of liquid, and (2) that the previously established curing
schedules (Reference 3-1) could not accommodate increased evolution of

product gases resulting from increased liquid content,

These preliminary studies were performed using inexpensive, low-grade
silicon carbide whiskers, which were primarily powders rather than whiskers,
with high L /D (length/diameter) ratios. Mixes made with 7, 5-volume~percent
silicon carbide whiskers, added to formulation No. 4 (taken from Table 4-1

of Reference 3-1, 16 parts by weight monofluorphosphoric acid to 100 parts

by weight zirconia), were found not to be fluid enough for casting. In the pre-
vious effort (Reference 3-1), increased fluidity with lower acid content was
gained with additions of either water or isopropyl alcohol. However, these
additions lowered the original strength of the matrix. In the current effort,
increased fluidity of the matrix was obtained by dilution with esters and through
addition of larger than normal quantities of monofluorophosphoric acid. The
effect of adding esters and larger quantities of acid on the strength of the matrix

was investigated experimentally.

Effect of Nonpolar Agents and High Acid Content on the Strength of Zirconia

The study of the reactions between ZrO2 and HZPO3F (see Section 3. 2, 2)
revealed that increasing the acid content would proportionally increase the
products of the reaction, ZrPZO HF and HZO' The reaction between ZrO2

and HZPO

s
3F results, within 2 hOZJ.l‘S at normal temperature and humidity,
in an increase of viscosity, Product gases are being evolved during this

period and during the curing. Evolution of the gases is restricted when the
viscosity of the mixture is increased, which could result in the entrapment
of the gases that develop high pressures during curing. This problem was

considered in the development of a castable formulation.
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To minimize these problems, liquids which do not enter into reactions between
ZrO2 and HZPO3F were used in an effort to obtain a matrix with good casting
characteristics. The use of alcohol and water achieved the desired result,

but was ruled out because the addition of alcohol and water to the mix sig-
nificantly lowers the strength of zirconia (as reported in Reference 3-1). This
decrease in strength is apparently due to the interference of these polar addi-
tives (alcohol and water) with the ionic balance of the acid and zirconia. There-
fore, in the present work, nonpolar liquids were used as diluents for the acid.
On the basis of work done with tricresyl phosphate, two acids, designated as
VM-6-73B5 and VM-6-73B3, were obtained from Ozark-Mahoning. Both acids
had 60-weight—percenﬁ HZPO3F and 40-weight percent of proprietary diluents,
The latter contained a phosphate ester diluent which boils at 572°F (BOOOC),
while the former acid contained an ester diluent with a boiling point of 266°F
(130°C).

An evaluation of the four acids obtained from Ozark-Mahoning and the effect of

adding silicon carbide whiskers to the zirconia matrix was then conducted, '

Five groups of three sets of samples (79 samples, 1.5 x 0.5 x 0. 2 inches) were
prepared for flexure strength testing, Each of the groups had, respectively,
one set made with 16 parts by weight of acid per 100 parts ZrOZ, a second set,
with 32 parts acid, and a third set with 48 parts acid. The five groups of
samples differed in the type of acids which were used. Four of the acids were
supplied by the vendor (Ozark-Mahoning Company) in fresh experimental lots,
while the fifth group was acid remaining from the previous program. The data

obtained in this testing are given in Table 3-4.

Sample groups 6, 8, and 20 were prepared using 7. 5-percent volume-fraction

of low-grade silicon carbide whiskers., Since these whiskers contained approx-
imately 50 -weight-percent of material with an aspect ratio (length/diameter)

less than 2, the fibers were washed to obtain the longer whiskers. Whiskers
which were 100 to 250 microns in length were removed by washing through
screens, It was found that only high-pressure water would separate the whiskers
during the screening operation; separation of the whiskers could not be accom-
plished by settling in water or dry screening. Plastic mixes could not be
obtained with the 16 parts acid and silicon carbide whiskers, but were obtained
with 32 and 48 parts acid.
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Table 3-4

FLEXURE STRENGTHS* OF PHOSPHATE BONDED
ZIRCONIA CONTAINING VARIOUS ADDITIVES

Sample Type Average Range of Number
Sample (Parts acid/ Flexure Flexure of
No. 100 Parts ZrOj) Strength (PSI) Strength (PSI) Samples
i5 16 Parts H2PO3F Acid 3,440 £ 200%% 3, 245 to 3, 645 4
(1.80 g/cc)
11 32 Do 2,336 + 1, 000 1, 082 to 3, 311 5
17 48 Do 3, 852 & 700%k% 3, 050 to 4, 800
16 16 Parts HoPO3F Acid 4, 441 + 340 4,012 to 5, 019 6
(1.72 g/cc)
12 32 Do 2,912 £ 800 1, 500 to 3,670
18 48 Do 4, 464 + 300%:% 3, 785 to 4, 680
19 16 Parts Diluted Acid 1, 037 + 300 603 to 1, 570 6
(60% HpPO3F Acid
+40% VM-6-73B5
Ester)
13 32 Do 1, 058 = 350 542 to 1, 445
22 48 Do 1,390 £ 250 1, 020 to 1, 730 8
21 16 Parts Diluted Acid 1, 381 £ 250 985 to 1, 685 8
(60% H2PO3F Acid
+40% VM-6-73B3
Ester)
14 32 Do 1, 769 = 500 1, 403 to 2, 280
23 48 Do 980 + 220 720 to 1, 230
20 16 Parts H2PO3F Acid 3, 250 2, 730 to 3, 770 2
(+ 7.5 V/O SiC
Whiskers)
6 32 Do 5, 036 £ 1, 000 2, 730 to 6, 180 4
8 48 Do 3,923 + 600 3,315 to 4, 725
*Flexure tests were done on l-inch spans, using 3-point loading. The

approximate sample dimensions were 0.2 x 0.4 x 1.5 inches,

Ta ale

#%These data are given *] Sigma

laals als,

*ekSamples laminated; bottom half of the sarmple was dense, top portion was

highly porous.

Only the bottom portion of the sample was tested.
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The curing schedule for the 79 samples is given in Table 3-5. The schedule
was similar to that utilized in the previous work, except that it was increased
at the boiling point of the esters, Flexure strength test data given in Table

3-4 revealed that Sample 6, containing SiC whiskers with 32 parts of acid had
strengths higher than those obtained with the formulation utilized in the first
year's effort, The maximum strength of zirconia reinforced with SiC whiskers
was 6, 180 psi. The use of the 1, 72 specific gravity acid provided bodies which
were stronger than those obtained with 1,80 specific gravity (sample groups

11, 15, and 17 for 1,80 grams/cc and 12, 16, and 18 for 1,72 grams/cc), The
lower strengths noted for samples containing the esters are attributed to

incomplete evaporation of the diluent.

When selecting the acid for the final preparation of the specimens, con-
sideration was given to the amount of gases that evolve during the chemical
consolidation. Based on the information provided by the vendor, the lower
the specific gravity of the acid, the higher is the amount of HF evolved,
The explanation for this is as follows. When monofluorophosphoric acid
containing 0. 6 mole HPOZF2 is used, 4.0 moles of HF are evolved upon
hydrolysis (see Equations 3-5). However, if 0.8 mole of HPOZF2 is used
to decrease the specific gravity of the acid, 4.4 moles of HF are evolved
as shown by Equation 3-9.

2. BHZPO +0.4H,PO

F +0. SHPOZF2 3POy

3 + 4. 4HZO —>

4. 4HF + 4H, PO (3-9

3774
The increased amount of HF that evolves when using low specific gravity
acid increases the possibility of having increased porosity in the ceramic
matrix. This would be especially true for large size ceramic specimens,
Therefore, to avoid the possibility of having high porosity parts, the acid

with specific gravity of 1. 80 gm/cc was selected for the preparation of

chemically consolidated ceramic.
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Table 3-5

CURING CYCLE FOR CHEMICALLY CONSOLIDATED
ZrO, UTILIZING DILUENTS

Time
(Hr)
Temperature First Year Second Year
(°F) (°C) (No Diluents) (With Diluents)
100 38 2 1
130 54 1
150 66 2 1
180 82 - 1
212 100 2 2
266 130 - 16
400 204 1 1
450 232 - 1
500 260 .- 1
550 288 - 1
600 316 1 2
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Preliminary Evaluation of Fiber-Reinforced Zirconia

Prior to making final whisker- or fiber-strengthened specimens, preliminary
studies were performed on mixing various reinforcing materials with zirconia
matrix. The objectives of these studies were to develop mixing techniques,

to establish problem areas, and to further evaluate the reactions between the
chemically consolidated zirconia and the various reinforcing materials, The

matrix used in these studies is described in Table 3 -6,

Zirconia samples, reinforced with the following types of short fibers (or
whiskers), were tested: graphite (Thornel 40) fibers, silicon carbide whiskers,
sapphire whiskers, and tungsten fibers. In order to simplify presentation of
specific strength data, it was planned that each composite contain the same
weight-percent of fibers, However, because of the diverse densities (between
0.0564 to 0.697 1b/in. 3) of the fibers, the required volume of Thornel 40 to be
added was too high for good mixing practices, The work at that point revealed
that about 12-volume-percent SiC or sapphire fibers (based on 100 parts by
weight of zirconia) was the maximum addition that could be made and still
obtain a castable mix (using the formula given in Table 3-6). The maximum
amount of tungsten or Thornel 40 that could be added was not determined, A
higher fiber or whisker content in the composite would require quantities of

acid greater than 32 weight-percent.

Table 3-6
ZIRCONIA MATRIX FOR FIBROUS ADDITIONS IN WEIGHT PERCENT

60 (-80 + 200 mesh calcia stabilized ZrOZ)

40 (-325 mesh calcia stabilized ZrOZ)

32 monofluorophosphoric acid (specific gravity 1.8 gm/cc)
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Mixing of reinforcing material into the matrix was accomplished by screening
the fibers into the wet mix and folding. This technique worked fairly well,
except that the final mix still contained lumps of fibers, especially when
tungsten fibers were used. Mortar and pestle were used to break up these
lumps. Although this technique worked more satisfactorily, it was still
inadequate for mixing of 1-mil tungsten fibers. The final mixing technique
selected for the tungsten fibers consisted of screening small portions of
tungsten fibers through a 10-mesh screen into the zirconia-acid mixture and
folding the tungsten into the mixture. For other reinforcing materials the use

of mortar and pestle was adequate,

Reactions of the tungsten fibers with constituents of the ceramic mix did not
appear to be as serious as those which occurred during studies of the solubility
of the fibers in monofluorophosphoric acid, Since the above-~-described mixing
technique for tungsten fibers did not allow addition of predetermined amounts
of fibers into the mix, a semi-quantitative technique was used to determine the
weight-percent of fibers in the cured specimen. This was accomplished
through chemical analyses of the matrices containing tungsten and the zirconia.
For samples with low tungsten content, a semi-quantitative chemical analysis
was conducted by emission spectroscopy, using standard ASTM electrodes and
Spec Industries G-1 Standard (0.1 w/oW). The samples with high tungsten
content in the zirconia matrix were determined by wet chemical analysis, as
follows: The cured matrix was crushed to fine particles, dissolved overnight
in 30 w/o hydrogen peroxide at room temperature; filtered, and washed with
water; dried at 221°F, and weighed, The loss in weight was reported as the

tungsten content of the matrix.
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For specimens containing other reinforcing materials, the fiber content was
determined by adding predetermined amounts of fibers into a predetermined

amount of zirconia-acid mix.

The specimens prepared during these preliminary mixing studies were tested
in flexure at room temperature; the results are shown in Table 3-7, The
results for zirconia without any fiber addition (standard specimens) are also
shown in Table 3-7, Although the standard specimens (S-2) described in
Table 3-7 were smaller in size than those used in the previous effort (see
Reference 3-1), the flexure strength data for both sets of specimens were
approximately the same., For comparison, the strength data obtained for
zirconia during the first-year effort are shown in Table 3-8, It is noted here
that the density of sample group S-2 is within 1 percent of the density shown
in Table 3-8.

3.3 FINAL PREPARATION AND TESTING OF WHISKER-STRENGTHENED
ZIRCONIA SPECIMENS
Following the preliminary exploratory material development work on whisker -
and fiber-strengthened zirconia, final specimens were prepared for strength
evaluation. All specimens were mixed using mortar and pestle, except for
tungsten-fiber-strengthened specimens. The specimens containing tungsten
fibers were mixed as previously described. Because of the poor initial per-
formance of Thornel-fiber-strengthened specimens, this material was excluded

from subsequent studies,

The three remaining reinforcing materials (silicon carbide whiskers, sapphire
whiskers, and tungsten fibers) were used in the preparation of flexure spec-

imens, which were tested at room temperature and at 2, 000°F, The test

results were used to select an optimum reinforcing medium, which was found
to be silicon carbide whiskers. Additional specimens were then prepared for
obtaining data on flexure strength, tensile strength, moduli of elasticity, and

coefficients of thermal expansion,
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Table 3-8
PROPERTIES OF CHEMICALLY CONSOLIDATED ZIRCONIA*

Range of Average Number of
Property Values Value Tests
Flexure Strength (psi) 3, 600 to 4, 640 4,210 6
Tensile Modulus of 8.6 to 12.5 10,25 ° 8
Elasticity (x10-6 psi)
Bulk Density - 0.137 -

(1b/in. 3)

*Reference 3-1, pp. 66, 105, 112 and 114)

3.3.1 Properties of Whisker- or Fiber-Strengthened Zr0O,

The properties of the final whisker- or fiber-strengthened, chemically con-
solidated zirconia are shown in Tables 3-9 and 3-10, Table 3-9 shows the
room-temperature properties, while Table 3-10 shows the properties at
2,000°F, Also shown in these tables are: specimen geometry, specimen
weight, theoretical and actual density of the material, fiber content, flexure
strength, flexure modulus, and strength/density ratio., The results are also
presented graphically in Figures 3-3, 3-4, 3-5, and 3-6. Thesc figures show
‘the variation in flexure strength with fiber content at temperatures of 70°F and
2,000°F,

Only the addition of silicon carbide whiskers has resulted in a significant
increase in flexure strength at room temperature and at 2, 000°F, At room
temperature, the addition of 9, l-weight-percentl of silicon carbide whiskers
to zirconia matrix increased the strength of zirconia by 55 percent., For the
same composite, the flexure strength at 2, 000°F was increased from

165 psi for unreinforced zirconia (Reference 3-1) to an average of 2,087 psi
for silicon carbide reinforced zirconia, The highest flexure strength obtained
at 2, 000°F was 2, 620 psi.

tThe weight and volume fractions of whiskers are based on unreacted
zirconia, For example, weight fraction of whiskers is equal to weight
of whiskers, divided by weight of whiskers, plus weight of unreacted
zirconia (no acid),
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3.3.2 Selection of Optimum Reinforcing Material

On the basis of the data shown in Figures 3-3, 3-4, 3-5, and 3-6, silicon
carbide whiskers were selected as the most desirable material for strengthen-
ing of the ceramic, From the information shown in Figures 3-3 and 3-6, a

7.4-weight-percent (approximately 12-volume-~percent) whisker content has

been selected as the optimum amount for preparing additional specimens for

the more complete characterization of the whisker-strengthened matrix,

3.4 CHARACTERIZATION OF OPTIMUM WHISKER-REINFORCED MATRIX

To characterize more completely the properties of chemically bonded zirconia
reinforced with 7, 4-weight-percent of silicon carbide whiskers, specimens
were prepared for obtaining flexure strength and modulus, tensile strength

and modulus, shear strength, and thermal expansion,

3.4.1 Preparation of SiC-Whisker-Strengthened Zirconia Matrix

The flexure, shear, and tensile specimen blocks were fabricated in wax-coated
aluminum molds, 1-1/8 x 1-1/8 x 39 inches in size. The castings were
separated by spaces 13 inches apart, permitting three blanks to be obtained
from each casting., The blanks were machined into flexure specimens, shear
specimens, and tensile specimens. (See Section 3.4.2 for a detailed descrip-

tion of specimen size and geometry. )

The matrix composition that was used in further evaluation of the optimum
whisker-strengthened matrix, and also throughout the remainder of the
program, is given in Table 3-11. The solid material was placed in a mortar
and blended manually with a pestle; acid was then added and folded manually

into the solids, with continual use of the pestle,

Technical difficulties caused the loss of many tensile specimens during curing
and machining. Cracking of specimens, excessive porosity, fracture during

machining, and foaming during initial casting were some of the loss factors.

The loss rate was decreased by: (1) increasing air circulation during curing,
and (2) pre-machining of the metal flanges to eliminate chatter during the

truing operation., Allowing the mix to react to an advanced stage before casting
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Figure 3-3. Flexure Strength of Chemically Consolidated Zirconia Strengthened with Silicon
Carbide Whiskers
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Figure 3-5. Flexure Strength of Chemically Consolidated Zirconia Strengthened with Tungsten

Fibers
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Figure 3-6. Specific Flexure Strength of Chemically Consolidated Zirconia Strengthened With
Silicon Carbide Whiskers
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Table 3-11

COMPOSITION OF CHEMICALLY CONSOLIDATED,
WHISKER-STRENGTHENED ZIRCONIA

Parts by Weight
Material Weight Percent
CaO Stabilized Zirconium Oxide
(-70 + 200 mesh - Norton Company) 60 55.6
CaO - Stabilized Zirconium Oxide 40 37.0
(-325 mesh - Norton Company)
Silicon Carbide Whiskers 8 7.4
(Carborundum Company)
100.0
Monofluorophosphoric Acid 32

(Specific gravity of 1, 80 gmcc;
Ozark-Mahoning Company)

reduced the number of large-size voids. The first stage in the curing process
requires the evolution of HZO and HF at room temperature before surface
gelling. In this stage, vibration of the mix to a low viscosity for 30 minutes
prior to casting aids in the evolution of the gases. The mix was cast into a
vibrating mold, More gaseous products are formed during the curing from

room temperature to 212°F, This curing period (Table 3-12) was doubled to

permit more complete evolution of the gases. Fewer large voids appeared

in samples processed in this manner.

3.4.2 Specimen Testing

Tension, flexure, shear, and thermal expansion tests were performed on the
SiC -whisker -strengthened matrix., Test methods employed previously
(Reference 3-1) were used, For completeness of the report, these are des-

cribed in the following subsections,
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Table 3-12

CURING SCHEDULE FOR CHEMICALLY CONSOLIDATED,
SiC-WHISKER -STRENGTHENED ZIRCONIA

Temperature
°p °c Period (Hours)
VlOO 38 2
130 54 2
180 82 2
212 100 4
300 149 2
300-600 149 to 316 2
600 316 1

Tensile Tests

A dog-bone type of specimen (Figure 3-7), similar to that described in ASTM
E3-61T, was used to test specimens at both room and elevated temperatures,
Since the grips were not subjected to high temperature, it was possible to

reduce fabrication costs by bonding metallic shoulders onto the specimen ends

with epoxy adhesives.

Precise alignment of the specimen with the grips was possible using the
gripping and alignment fixture shown in Figure 3-8, The alignment of the
system was based on a completely rigid load train operating through a special
die set. The grips act through aligned holes in the die set, thus minimizing

lateral movement during the test.

The furnace used for heating the tensile specimens consisted of a water-cooled
shell with three graphite resistance-heating elements. Fire-brick insulation
was used to minimize the heat loss to the water-cooled shell. Since it was
necessary to protect the graphite from oxidation, argon gas was introduced

into the furnace during the tests. A chromel-alumel thermocouple was
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k FURNACE e <

Figure 3-8. Tensile Test Alignment Fixture

cemented to the specimen to monitor the temperature., A photograph of the

tensile test furnace is shown in Figure 3-9,

Strain measurements at room temperature were made using strain gages
located 180° apart in the test section. Two strain gages were used to detect
any misalignment caused by improper seating in the grips, The Optron optical
extensometer was used for elevated-temperé,ture tensile tests, Figure 3-10

is a photograph showing the Optron in place for a test,

Flexure Tests

Flexure tests, using three-point loading as shown in Figure 3-11, were
performed on specimens measuring 4~1/2 x 1 x 1/4 inches, The distance
between supports was 4 inches. A heating unit (shown in Figure 3-12) was
used to perform elevated-temperature tests (70°F to 2,000°F). The specimens
were radiantly heated by six graphite,. resistance-heating elements, The same
temperature monitoring method as employed for the tensile tests was used.

All high-temperature tests were conducted in an argon atmosphere. Auto- ‘

graphic recordings of load as a function of beam deflection were obtained
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7 AL —

Figure 3-11. Flexural Testing of Specimens

using the Model 680 Optron optical extensometer., The load was plotted on
the autographic recording by manually transmitting a signal at fixed load
increments. A deflectometer was also used to obtain the load-~deflection
data., The measured data were used to compute stress, strain, and flexure

modulus,

Shear Tests

In the shear testing, it was found that notching specimens at the shear planes
was required to assure failure at the desired location (Figure 3-13). Pre-

viously it was found (Reference 3-1) that, without the notches, the specimens

had a tendency to fail in bending at the midpoint between the shear planes.

All shear tests were conducted with notched specimens,

The shear test fixture was composed of two pieces; the bottom,‘br solid piece,
was 1 x 4-1/2 inches with a l-inch cavity in the center, The top, or ram,
was l-inch square and applied the load across the entire section between the
notches, The test fixture was made of graphite. The same furnace and
temperature monitoring devices used for flexure tests were used for the shear
tests,
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NOTE: 1, TOL. + 1/16
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Figure 3-13. Shear Specimen

Thermal Expansion Tests

Thermal expansion of the specimens was measured using dual-image
extensometers,and alumina and sapphire dilatometers, From 70°F to 1, 500°F
the thermal expansion was measured with a NETZSCH alumina dilatometer.
Above 1, 500°F thermal expansion was measured with a sapphire dilatometer

and, as a rough check, with a Gaertner dual-image extensometer.

Up to 1, 500°F, the test temperature was determined with a chromel alumel
thermocouple attached to the specimen., Above 1, 500°F, an optical pyrometer
was used to determine temperature of the specimen with corrections made for

emdittance,

3.4,3 Properties of SiC-Whisker-Strengthened Zirconia

Using the test methods described in the previous section, tensile, flexure,
shear, and thermal expanéion properties at room and elevated temperatures
were obtained for a zirconia matrix strengthened with 7, 4-weight-percent of
5iC whiskers,
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Tensile Properties

Table 3-13 is a resume of the tensile test data obtained for the SiC -whisker-

strengthened zirconia.

Flexure Properties

A summary of the flexure properties at room and elevated temperatures is

shown in Table 3-14, The variations of flexure strength, Young's modulus,

and strength-density with temperature are shown in Figures 3-14 and 3-15,
Finally, Figure 3-16 shows a typical stress-strain curve for a SiC -whisker-

strengthened zirconia tested at 75°F.

Shear Properties

Shear properties of the zirconia matrix, strengthened with SiC whiskers, are
shown in Table 3-15, In view of the mode of failure, these data are considered

questionable.

Thermal Expansion Properties

Figure 3-17 shows thermal expansion data measured with various techniques.
Thermal expansion of SiC-whisker-strengthened zirconia is lower than the

thermal expansion of plain ZrOZ.

3.4.4 Comments on Test Data

Flexure strengths of the SiC-whisker-strengthened, chemically consolidated
zirconia with 32 parts monofluorophosphoric acid revealed during this study,
are different from those of the unreinforced matrix (Reference 3-1, p. 112).
At room temperature and 2, 000°F, the whisker-strengthened matrix had
higher flexure strength than the unreinforced ceramic; while at temperatures
‘of 1,000°F and 1, 500°F the reverse ig true., There was no failure at a tem-
perature of 1, 500°F, but the samples deformed beyond the limits of the test
equipment, At 2,000°F, the average flexure strength of whisker-reinforced
ceramic was 1, 520 psi as compared to 165 psi for a matrix without any
whiskers (Reference 3-1), The presence of whiskers imparts some plasticity
" to the material. As shown in Figure 3-14 both the modulus and flexure

. strength curves show an unexplainable dip at 1, 500°F,
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FLEXURE STRENGTH o X 10-3 PSI AND YOURG'S MODULUS E X 10‘“6 PSI

MATERIAL:

NOMINAL SPECIMEN DIMENSIONS:

CHEMICALLY BONDED ZIRCONIA STRENGTHENED
WITH 7.4 WEIGHT PERCENT* OF SiC WHISKERS

L1/2" x 1" x 1/b"

12 LOADING: 3-POINT LOADING
WEIGHT OF SiC WHISKERS
* 7. b B oy —————————————— e t——
WEIGHT PEFCENT = (i —UHTSKERS + WT, UNGONDED Zro,
10 S e ]
i
|
8 | S R DR g e b e
~ YOUNG'S MODULUS (E X 10~ PSI) ;
NG !
~N
N
N
6 | ~ — S R S —
Q\ N |
L FLEXURE STRENGTH
(o x 10=3 PSI) TN
2
0 L | |
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TEMPERATURE (°F)

Figure 3-14. Flexure Strength and Young’s Modulus of SiC-Whisker-Reinforced, Chemically

Consolidated Zirconia as a Function
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ULTIMATE FLEXURE STRENGTH OF COMPOSITE X 1073 ps|

NOTE s

Wt. Fraction =

A o i gt s

FIBER MATERIAL = SILICCN CARBIDE
MATRIX - 100 PARTS BY WEIGHT ZIRCONIA

32 PARTS BY WEIGHT

MONOFLUGROPHOSFHORIC ACID

[1© AVERAGE TEST RESULTS

Specimens contained 7.4 weight percent
of silicon carbide whiskers
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Figure 3-15. Flexure Strength of Sic-Whisker-Reinforg
Function of Temperature
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gd, Chemically Consolidated Zirconia as a
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STRESS, PSI X 1073

NOTE ¢

1) Date obtained from & flexure test
whereby the specimen was subjected
to & three point loading.,

2) The specimen contsined 7,4 weight

percent of silicon carbide whiskers

3) The stress shown is the raximum
tension stress at the bottom of
the specimen

//,/‘

/

/

Figure 3-16. Typical Stress-Strain Curve for SiC-Whisker-Reinforced, Chemically Bonded

2 ] 6 8

STPAT IN/I3 X 0%

Zirconia (Room-Temperature Data)
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Figure 3-17. Linear Thermal Expansion of SiC-Whisker-Reinforced Chemically Consclidated Zirconia
(32 Parts HZPD3F) Compared with Unreinforced Matrix (16 Parts HyPOgF)
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The large scatter and relatively low strength values in the tensile test data
are difficult to explain, A logical reason may be a non-uniform whisker dis-
tribution within the gage length. The flexure specimens usually have a short
gage length, of the order of 0,01 inch, and the tensile specimens have a gage
length of approximately 5 inches. The possibility of non-uniform whisker
distribution is obviousiy much greater for the long gage length. Thus, if any
section within the 5-inch gage length is low in whisker content, failure would

take place at that point,

3.5 REFERENCES FOR SECTION 3

3-1. L., B. Greszczuk and H, Leggett., Final Report - Development of a
System for Prestressing Brittle Materials, Douglas Aircraft Company
Report No. DAC-49200, August 1967,

3-2. Anon. Technical Information Bulletin No., 465-202~DG. Union Carbide
Corporation, Carbon Products Division, New York, New York,

3-3. Anon. Carborundum Technical Data Sheet. Carborundum Company,
New Products Division, Niagara Falls, New York, July 1965,
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Section4

EXPERIMENTAL AND THEORETICAL STUDIES ON UNIAXIALLY
PRESTRESSED, SiC-WHISKER-STRENGTHENED Zr0,

Using the analyses developed in Reference 4-1, tradeoff studies were con-
ducted on the strength of uniaxially prestressed, whisker-strengthened
zirconia as affected by the volume fraction of the reinforcement, applied
reinforcement prestress, temperature, and externally applied load. The
results of these studies were used to design uniaxially prestressed flexure
and tensile specimens. The specimens were fabricated using the previously
developed setup (Reference 4-1, pp; 131-138), The flexure and tensile
specimens were tested at room and elevated temperatures, Inaddition to
these tests, the specimens were also evaluated for resistance to thermal
shock and thermal cycling, Finally, a data evaluation and test-theory
correlation were made for uniaxially prestressed, SiC-whisker-

strengthened Zr0,.

4,1 TRADEOFF STUDIES AND DESIGN OF UNIAXIALLY PRESTRESSED,
SiC-WHISKER-STRENGTHENED Zr0,
Calculations for the tensile strength of uniaxially prestressed composites
were made using the equations in Section 3,2 of Reference 4-~1, the
ceramic properties indicated in Figures 3-14 and 3-17, and the tungsten
cable properties given in Section 5 of Reference 4;1. The variables con-
sidered in this study were reinforcement Cbnﬁguration, reinforcement
volume fraction, mechanical and thermal prestress of the cable, and use
temperature., Variation of the properties of constituents with temperature
was also considered. The volume fractions and configurations of the cables
werethe same as those usedinthefirst-year effort(Reference 4-1), Figures4-1
and 4-2 show typical results of the analytical studies. Essentially, these
curves represent the envelopes for the tensile strength of prestressed,
whisker-reinforced ceramics. The composite stresses shown are the

stresses which would initiate failure in the ceramic or the reinforcement.
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COMPOSITE TENSILE STRPENGTH, KSI

REINFORCEMENT: 21 STRAND TUNGSTEN CABLE
CERAMIC: CHEMICALLY BONDED ZIPCONIA REINFORCED
WITH 8 WEIGHT PERCENT OF SILICON
CARBIDE WHISKEPS
CONSOLIDATION TEMP: 600°F
k, = 0.0363 (NET VOLUME FPACTION OF PRESTRESSe
ING MATEPIAL) '
o, = APPLIED NET PPESTRESS (APPLIED LOAD
DIVIDED BY NET APRFA)
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TEMPERATURE (°F)

Figure 4-1. Elevated Temperature Tensile Strength of SiC-Whisker-Reinforced Zirconia Prestressed With
21-Strand Tungsten Cable (Theoretical Results)
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COMPOSITE TENSILE STRENCTH, KSI
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FEINFORCEMENT:
CERAMIC:

L9 STRAND TUNGSTEN CABLE

CHEMICALLY BONDED ZIRCONIA REINFORCED

WITH 8 WEICHT PERCENT OF SILICON

CARBIDE WHISKERS '

CONSOLIDATION TEMP: 600°F

k, = 0.0825 (NET VOLUME FRACTION OF PRESTRESS=
ING MATERIAL)
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Figure 4-2. Elevated Temperature Tensile Strength of SiC-Whisker-Reinforced Zirconia Prestressed With

49-Strand Tungsten Cable (Theoretical Results)
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For any given prestress, the upper horizontal portion of the curve repre-
sents the composite stress that will cause tensile failure in the ceramic
(without necessarily causing reinforcement failure); the steep portion of the
curve represents the composite stress required to cause failure of the
reinforcement (without necessarily causing ceramic failure), On the basis
of the results presented in Figures 4-1 and 4-2, a uniaxially prestressed
specimen design was selected; the selected prestress level was 88,400 psi,
while the prestressing material was approximately 8. 25~volume~percent,
49-strand tungsten cable, The above selection was made to demonstrate
high composite strength at 1, 500°F, a temperature at which the unpre-

stressed material exhibits poorest properties,

4.2 FABRICATION OF UNAXIALLY PRESTRESSED, SiC-WHISKER-
REINFORCED SPECIMENS
The setup described in Reference 4-1 was used to fabricate the prestressed
zirconia matrix specimens for the flexural and tensile strength tests, The
flexure specimens were made with four cables, and the tensile specimen
with three cables. Each cable contained 49 strands of tungsten wires. The
diameter of each strand was 0,012 inch, The matrix compositions for the
flexure and tensile specimens were those shown in Table 3-11. The curing
schedule shown in Table 3-12 was used. The prestressing technique and

fixtures used were the same as described in Reference 4.1,

The development of the SiC-whisker-reinforced zirconia body was continued
during fabrication of the unaxially prestressed tensile specimens. The
mortar and pestle were not used; instead, the solid materials were blended
in a V-type blender, Acid was added to the solids by manual mixing,
Batches were made large enough to fill two cavities of the prestressing
molds which were 1-1/8 x 1-1/8 x 39 inches in size. The flexure specimens
were cast after a 30-minute aging of the mix on the vibrator. The molds
and the prestressing fixture were vibrated while the ceramic was cast in
place. After the ceramic was cast and vibrated in place for 1 hour, it was

cured in place as described in Reference 4-1.
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The specimens continued to have occasional large voids. The aging period
was extended to 120 minutes for the fabrication of 12uniaxially prestressed
specimens, The cure cycle was extended further by precuring at room
temperature for 16 hours, followed by the cure cycle given in Section 3. 2.
Most of the specimens were free of large voids, indicating that the aging of
the mix and the extension of the cure period reduced void size., Although
the specimens occasionally had voids and cracks, in general the above-~
described fabrication technique appeared to work satisfactorily, and was

used to prepare the flexure and tensile specimens,

4,3 CHARACTERIZATION OF UNIAXIALLY PRESTRESSED, SiC-
WHISKER-STRENGTHENED ZIRCONIA

Following the preparation of uniaxially prestressed specimens, tests were

performed to obtain their tensile and flexure strengths at room and elevated

temperatures. In addition, thermal cycling tests were performed on pre-

stressed flexure specimens; the specimens also were evaluated for resist-

ance to thermal shock,

4.3.1 Testing of Uniaxially Prestressed Specimens

The flexure and tensile strength tests were conducted in the manner described
in Section 3.4. The specimens were tested at the following temperatures:
7OOF, 1, OOOOF, 1, SOOOF, and 2, OOOOF; a minimum of three specimens were
tested at each temperature. No special problems were encountered while
testing the flexure specimens by the previously described methods. While
testing the tensile specimen, most of the ultimate failures were caused by

pullout of the cables, rather than cable fracture.

Initially, all tensile specimens were made as shown in Figure 4-3a. This
design was adequate for obtaining cracking stresées. However, ultimate
failure was caused by pullout of the cables. Reducing the length of the
shoulder or tying the cables into one unit did not prevent cable pullout.
Therefore, the specimen was redesigned to the configuration shown in

Figure 4-3b. This design worked satisfactorily for obtaining cracking and
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ultimate strengths. This specimen was, however, too short for the elevated-
temperature test fixture. The specimen was redesigned further to the con-
figuration shown in Figure 4-3c, This design was found to work

satisfactorily, Ultimate failures occurred in the test sectfion.

The design shown in Figure 4-3c was used on several specimens, which were
tested once, and which failed by pullout, Tapered aluminum sleeves were
bonded onto the specimens; after which they were retested, Figure 4-4 shows
a new tensile specimen design; Figure 4-5 shows the ultimate failure of the

tensile specimen tested in the new manner,

4.3.2 Flexure Strength of Uniaxially Prestressed, SiC-Whisker-Strengthened
Zirconia

Complete descriptions of flexure specimens, andof the flexure test results,
are given in Table 4-1., A description of the specimen quality and failure
mode is also given in Table 4-1. Most of the specimens failed by cracking on
the bottom surface of the specimen (tensile side of the flexure specimen).
This initial failure, referred to as the cracking stress, was followed by com-
pressive failure on the top surface, denoted as the ultimate strength, A
typical flexure stress-strain curve for a prestressed flexure specimen tested
at 1, 000°F is shown in Figure 4-6. After the specimens were tested and
fractured as described in Table 4-1, several specimens were tested a second
time. During the second test, the specimens were turned over and tested in
flexure. The results are shown in Table 4-2, It is repeated here that the
second test was conducted on pre-cracked specimens, Even so, the ultimate
strengths obtained during the second test were significantly higher than
during the first test, as can be seen by comparing the results shown in
Tables 4-1 and 4-2,

4,3.3 Tensile Strength of Uniaxially Prestressed, SiC-Whisker-Strengthened
Zirconia

A complete description of the results of tensile testing is shown in Table 4-3,
While tensile tests were being conducted, some problems were encountered
using the Optron to measure Young's modulus, Therefore, in several
instances, a high-temperature extensometer was used to obtain the modulus

data,
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COMPOSITE STRESS, KSI

SPECIMEN DESCRIPTION: UNIAXIALLY PRESTRESSED FLEXURE SPECIMEN,
(4 1/2" x 1" X 1/4")

PRESTRESSING MATERIAL: LO-STRAND TUNGSTEN CABLES MADE OF 0,012" DIA,
STRANDS. .

MATRIX MATERIAL: CHEMICALLY CONSOLIDATED ZIRCONIA STRENGTHENED WITH
7.4 WEICHT PERCENT OF SiC WHISKERS

APPLIED AVERAGE PRESTRESS: 0.1 = 90,000 PSI (approximately 500 1lbs
P preload per cable; L cebles per specimen)

Fa

1 | ]
COMPRESSIVE FAILURE OF CERAMIC
AT (B)«JN‘__“_‘~~~~

[
N

="
/o//q

ILE FAILURE OF CERAMIC AT (A)

0.002 0.003 0.00k 0.005
STRAIN, IN/IN

Figure 4-6. Typical Stress Strain Curve for a Uniaxially Prestressed Flexure Specimen Tested
at 10000F
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4,3,4 Resistance to Thermal Shock of Prestressed and Non-Prestressed
Ceramic

Thermal shock tests were conducted on three SiC-whisker -strengthened
zirconia specimens and three SiC -whisker-strengthened, prestressed

specimens,

The shock test consisted of inserting a specimen into a furnace pre-heated

to 2, 000°F. The specimen was left in the furnace, in an argon atmosphere
for 10 minutes, then removed, placed on a thick steel plate, and allowed to
cool. The approximate cooling time was 10 minutes., The prestressed
specimens were subjected to ten thermal shock cycles without any apparent
failure. In two instances, small pieces of ceramic chipped off the sharp
edges when the ceramic was subjected to the first cycle. No further chipping
occurred during cycles 2 to 10. For all practical purposes, the prestressed
specimens were intact. Following thermal shock cycling, the specimens
were tested in flexure at room temperature, Three-point loading was used,

with a 4-inch span between supports, and a load applied at the midspan.

Similar tests were performedonthree non-prestressed, whisker-strengthened
specimens. The non-prestressed specimens exhibited failure during the first
cycle, They failed by cracking normal to the major axis of the specimen.
Several cracks were visible on both flat surfaces of the specimen. These
cracks appeared to penetrate through the thickness of the specimen and
through approximately 75 percent of the specimen width. Although each
specimen remained in one piece after the first cycle, each crumbled com-
pletely when subjected to subsequent cycles. Since the non-prestressed
specimens failed in the first thermal shock cycle, they could not be tested

in flexure,

The results of the thermal shock testing are shown in Table 4-4. The benefit
of prestressing on thermal shock resistance is quite obvious from the results
presented therein, The non-prestressed specimens failed during the first
cycle, while the prestressed specimens withstood ten thermal shock cycles

without failure. Moreover, after ten thermal shock cycles, the average
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flexure strength of these specimens at room temperature was significantly
higher than the average flexure strength of specimens which were not thermal
shock cycled. The specimens which were thermal shock cycled had é.n
average flexure strength of 14, 667 psi, while those which were not shocked

had an average flexure strength of 12, 309'psi:

4, 3.5 Thermal Cycling Tests on Prestressed and Non-Prestressed Ceramic

Thermal cycling tests were conducted on three, SiC-whisker -strengthened
zirconia specimens and three, SiC-whisker-strengthened, prestressed speci-
mens, The thermal cycling tests consisted of inserting the specimens in the
furnace in an argon gas atmosphere at room temperature, and slowly heating
the furnace to 2, 000°F (about one-half hour); the furnace was held at 2, 000°F
for 5 minutes, and then allowed to cool slowly to room temperature (about
one-half hour); the furnace was again heated slowly to 2, 000°F (about
one-half hour) and held at 2, 000°F for ten minutes, The specimen was then
cooled‘, while still in the furnace, and flexure tested at room temperature.
The results of thermal cycling tests are shown in Table 4-5, After thermal
cycling, the flexure strength of prestressed specimens was an order of
magnitude higher than that of the non-prestressed ones, The average com-
posite strength of prestressed specimens which have been cycled was

5,263 psi, as compared to 434 psi for the non-prestressed specimens. The
reduction in composite strength for prestressed specimens, as compared to
that discussed in the previous section, is attributed to prolonged exposure to
high temperatures, By using a slow heating rate, high relaxation of prestress

would be expected.

4,4 DATA EVALUATION AND TEST-THEORY CORRELATION FOR
UNIAXIALLY PRESTRESSED, SiC-WHISKER-STRENGTHENED
ZIRCONIA

The experimental results obtained from flexure and tensile tests were com-

pared with the theoretically predicted results. Moreover, a comparison was

also made between the strength of zirconia, prestressed zirconia, SiC-
whisker -strengthened zirconia, and prestressed, whisker-strengthened

zirconia,
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4.4.1 Test-Theory Correlation for the Strength of Prestressed,
SiC -Whisker-Strengthened Flexure Specimens

Using the theory developed in Reference 4-1, the stresses causing cracking
and ultimate failures of prestressed, SiC-whisker-strengthened flexure
specimens were predicted. Table 4-6 shows a comparison between experi-
mental and theoretical results. The correlation between experiment and
theory is much poorer than the correlation obtained previously (Refer -
ence 4-1) for the case of zirconia without any SiC whiskers, This stems
apparently from the poor quality of the specimens that were obtained when
using SiC whiskers and 32 parts acid content (twice the amount used in the

first-year effort),

4.4.2 Test-Theory Correlation for the Strength of Prestressed,
SiC -Whisker-Strengthened Tensile Specimens

The test data shown in Table 4-5 were compared with theoretical results
based on the equations given in Reference 4-1. Table 4-7 shows test-theory
correlation for the cracking and ultimate strengths of prestressed zirconia
strengthened with SiC whiskers. The theory appears to predict the cracking
stress with a reasonable degree of accuracy. The greatest difference
between experimental and theoretical results occurs in specimens having
large variations in applied prestress, T i’ that is, the variation in o

from cable to cable within any given specimen.,

Since most of the specimens failed ultimately by pullout of the three cables,
the experimental results given in the column entitled "Ultimate Tensile
Strength of Composite'' do not represent true ultimate strength. The
theoretical results are, however, based on the assumption that the ultimate
failure would be by a tensile failure of the reinforcement. The inability to
experimentally achieve the correct failure mode in most of the cases (i.e.,
ultimate failure in the test section), accounts for the discrepancy between
the experimental and theoretical results for the ultimate tensile strength.
Only specimens 2, 8, 9, and 13 had correct ultimate failure modes, that is,

reinforcement failure.
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For several of the specimens, the predicted ultimate strengths were con-
siderably lower than the experimental values (see, for example, specimens
13, 14, 15 and 16). Assuming a lower prestress for these specimens, a
much better correlation can be obtained between experiment and theory.
This indicates that perhaps the true prestress levels were lower than those
indicated in Table 4-7.

4,4,3 Comparison of Prestressed and Non-Prestressed Ceramics With and
Without SiC Whiskers

To establish the influence of SiC whiskers and prestressing on the strength
of ceramics, a comparison was made between the strength of plain ceramic,
SiC -whisker -strengthened ceramic, prestressed ceramic, and SiC-whisker-
reinforced, prestressed ceramic. Since the location of the prestressing
material and the prestress level varied from specimen to specimen, the
experimental results were normalized to a given prestress level, and a

given reinforcement location,

Faijilure Load Normalization

Since variations existed in the prestress level and location of the reinforce-
ment from specimen to specimen, it would be rather meaningless to compare
the raw test data. Therefore, the data were normalized for a constant

configuration,

In the case of the flexure specimens, the experimental data were normalized
for a constant prestress of 90, 000 psi and zero reinforcement eccentricity

(the reinforcement was assumed to be at the centroid of the specimen).

The first step in the normalization procedure was to predict the theoretical
strengths of the specimens for the actual applied preload and the actual wire
location for each specimen., This predicted load was designated as Ft, The
normalized theoretical load was then determined by using the reference
prestress of 90, 000 psi; i, e., the prestress to which everything would be
normalized, and assuming that the reinforcement was located at the centroid,

thus predicting a theoretical failure load, designated F?, The normalized
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experimental failure load was then obtained by multiplying the actual failure
load, F, by the ratio of normalized load (F})to predicted load (F{) as shown
in Equation (4~1)

n_ o Ft
F " =F ——— (4-1)
e e Ft

In the case of tensile specimens, the reinforcement was concentric;
therefore, the data were normalized with respect to the prestress only. In

this case, all the data were normalized to a 100, 000 -psi prestress.

The experimental data were normalized to a constant prestress of 100 KSI by
first predicting, theoretically, the cracking load for actual prestress in the

specimen, Ty, then predicting, theoretically, the crackingload corresponding
to a prestress of 100 KSI, T, The normalized experimental cracking load,

Tg, was determined from the following equation,

n

n . Tt
Te = Te T, (4-2)

t

Comparison of Flexure Strengths for Zr0p Specimens, Prestressed Zr0)
Specimens, Whisker-Strengthened Zr0) Specimens, and Prestressed,
Whisker-Strengthened Zr0)p Specimens

A comparison of normalized flexure strengths of various specimens is shown
in Figures 4-7 and 4-8. Figure 4-7 shows a comparison between the flexure
strength of plain Zr0,, flexure strength of SiC-whisker-reinforced Zr0p,
cracking stress of prestressed Zr0p, and cracking stress for 5iC-whisker-
strengthened and prestressed Zr0. The data for plain and prestressed Zr0p
were obtained during the first-year effort (Reference 4-1). However, for
use in Figure 4-7, it was normalized for zero reinforcement eccentricity
and a prestress of 90, 000 psi. The data for SiC-whisker-strengthened Zr0;

were obtained during the present effort, These data, too, were normalized.
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Figure 4-7. Normalized Experimental Cracking Stresses for Flexure Specimens
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Figure 4-8. Normalized Experimental U!timate Strength for Flexure Specimens
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Figure 4-8 compares the flexure strengths of Zr0;,, and SiC-whisker-
strengthened Zr0, to the ultimate strengths of prestressed Zr03 and SiC-

whisker-strengthened Zr0 It is noted here that, for non-prestressed cera-

mics, the cracking stresszand the ultimate strengths coincide.

The results shown in Figure 4-7 indicate that SiC whiskers increase the
flexure strength of Zr0, at low temperatures (709F to = 700°F) and at high
temperatures (=1, 7009F to 2, 000°F, and above). In the intermediate
temperature region (700°F to 1, 7009F), plain ZrOZ shows somewhat better
strength than whisker-reinforced Zr0;. A significant increase in strength

was obtained at 2, 000°F through addition of SiC whiskers.

For prestressed systems, the data indicate that the stress at which ceramic
cracking occurs is higher for Zr0; than for SiC~whisker-strengthened and
prestressetd Zr0,. This holds true up to 1,000°F, No data could be obtained
for prestressed Zr0, above 1,000°F, Above that temperature the pre-
stressed Zr0; failed by excessive deformation. On the other hand, the SiC-
whisker-strengthened and prestressed Zr0) retained its strength to 2, 000°F,
A reduction in strength occurred at 1, 500°F. Thus, for prestressed
systems, the SiC-whisker-strengthened, prestressed Zr0; appears to be

superior to prestressed Zr0) at temperatures of 1,000°F and above.

For ultimate strengths (Figure 4-8), prestressed Zr0, appears to be
superior to prestressed, whisker-strengthened Zr02, up to a temperature
of 1,500°F, No data were obtained for the ultimate strength of prestressed
ZrQ) above 1, 500°F, Above that temperature, the material failed by

excessive deformation.

Comparison of Tensile Strengths for Zr0, Specimens, Prestressed Zr0;
Specimens, SiC-Whisker-Strengthened Specimens, and Prestressed, SiC-
Whisker-Strengthened Specimens

Comparison of the tensile strength of various specimens, similar to the data
shown in Figures 4-7 and 4-8, is made in Figures 4-9 and 4-10. Figure 4-9
shows the comparison between the tensile strength of plain Zr0, and SiC-

whisker ~reinforced Zr02, and the cracking stress for prestressed Zr0p and
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Figure 4-9. Normalized Experimental Cracking Strength for Tension Specimens
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prestressed, whisker-reinforced Zr0,. In Figure 4-10, the ultimate
strengths are shown for the case of prestressed specimens, In the latter
case, only the results where the specimen failed completely (tensile failure
of wire and ceramic) are shown., Ultimate failures where the wires failed

by pullout were ignored in this comparison,

The results illustrated in Figure 4-9 show that, at low temperatures, the
tensile strength of Zr0) is higher than the tensile strength of whisker-
strengthened Zr0y. At high temperatures, the opposite is true. As was
mentioned previously, the low strength of whisker-reinforced ceramic is
attributed not so much to the ineffectiveness of whiskers, but to poor whisker

distribution within the specimens.

At temperatures above 1, 000°F, the SiC-whisker-strengthened specimens

exhibited higher tensile strengths than the Zr0), specimens.

Figure 4-9 shows that the addition of whiskers significantly increases
cracking stresses for prestressed tensile specimens, both at low tempera-
tures (70°9F to 800°F), and at higher temperatures (1, 500°F and above).
Results for the ultimate tensile strength (see Figure 4-10) are

self-explanatory.

4,5 RESULTS AND CONCLUSIONS

Experimental results obtained to date indicate that, in all cases, the addition
of SiC whiskers increased the elevated-temperature strength (tensile and
flexure) of the ceramic. In general, the quality of specimens containing SiC
whiskers and twice the normal acid content, was not as good as that of speci-
mens without any whiskers, Improvement of the quality of whisker-
strengthened specimens is expected to yield higher strength values than those
obtained to date., It appears that a reduction in acid content is desirable.

The use of high acid content to achieve a castable mix resulted in specimens

with higher than normal porosity.

The addition of 5iC whiskers to Zr0) resulted in an increase of room-
temperature flexure strength, and a decrease in the room-~temperature

tensile strength, This inconsistency in behavior is attributed to the
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nonuniform whisker distribution within the gagelength of the tensile specimen,
Improved mixing techniques for achieving a more uniform whisker distribu-
tion appear highly desirable., Furthermore, to insure the reliability of the

test data, more extensive testing than that conducted to date is desirable.

4,6 REFERENCES FOR SECTION 4

4-1. L. B. Greszczuk, and H. Leggett, Final Report-Development of a
System for Prestressing Brittle Materials, Douglas Aircraft Company
Report DAC 49200, August 1967,
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Section 5

EXPERIMENTAL AND THEORETICAL STUDIES ON
BIAXIAILY PRESTRESSED CERAMICS

Phase II of the program involved experimental and theoretical studies on
biaxially prestressed cylindrical configurations. Initially, a literature
survey was conducted on biaxial prestressing of brittle materials. Analysis
methods were then developed and used to investigate the factors governing
the strength of biaxially prestressed ceramic cylinders. Parallel with the
theoretical effort, experimental techniques were investigated for fabricating
biaxially prestressed specimens. This included an investigation of the
feasibility of achieving a desirable reinforcement orientation through varia-
tion of winding mode, proper positioning of the reinforcement, design of the
mandrel to minimize reinforcement slippage, and means of achieving
desirable fiber pretension. Since it was found that ceramic strips had to be
placed between the mandrel and the reinforcement to prevent the reinforce-
ment from resting on the mandrel, studies were also performed on the
ability of freshly cast ceramic to adhere to precast, precured parts. Finally,
using the results of the theoretical and experimental efforts, biaxially pre-

stressed cylinders were designed,

5.1 LITERATURE SURVEY ON BIAXIAIL PRESTRESSING OF

BRITTLE MATERIALS
A literature survey was conducted on biaxial prestressing of brittle
materials. This survey concentrated primarily on various publications
regarding prestressed concrete, Examination of various publications
regarding ceramics has not produced any significant information on the
work in the field of prestressed cylindrical structures. As to the work on
prestressed concrete, L. Feeser and J. Chinn (Reference 5-1) conducted

experimental studies on the strength and stiffness of spirally prestressed
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concrete cylinders. They tested 34, 3-inch-diameter by 12-inch-long solid
concrete cylinders. The cylinders were spirally overwound with two sizes
of wire: 0. 054-inch-diameter steel wire with an ultimate strength of 251 KSI,
and 0, 0595-inch-diameter steel wire with an ultimate strength of 302 KSI.
The cylinders were wrapped with the wires at pitches of 1/16, 1/10, 1/6 and
1/4 inch, with initial tensions of 10, 100, 200, or 300 pounds per wire.
Failure in all the prestressed cylinders occurred when the wire ruptured at
a necked-down section because of excessive hoop stress. The author's con-
cluded that the increase in strength due to spiral action was independent of
the initial tension in the wire. Willis B. Johnson had reached a similar
conclusion in his thesis at the University of Colorado in 1950. Figure 5-1

shows the increase in stiffness that was obtained by increasing the prestress.

Chi and Biberstein (Reference 5-2), and also Leonhardt (Reference 5-3)
discuss a method of prestressing circular concrete structures which relies
on a cold drawing process to give the desired tension. A die is mounted on
a track which moves with a constant speed along the axial direction of the
cylindrical structure, while the structure rotates on a lathe. The pre-
stressing wire is fed from the shipping reel through the die, and anchored
at one end of the cylinder. While the wire is being wound on the cylinder it
is drawn through the die, acquiring its final diameter and high strength only
as a result of the winding operation. The prestressing force, therefore,
corresponds to the drawing resistance. The angle of wrap can be varied by
changing the ratio of rotational speed of the lathe to the axial speed of the
die.

Leonhardt (Reference 5-3) describes a hoop prestressing method for cylin-
ders whereby a driving wheel, or pulley, rotates around the circumference
of the cylinder. The prestress is produced when the wire to be tensioned is
unwound from a pulley. The circumference of the pulley is smaller than the
circumference of the drive wheel by an amount equal to the wire extension,
corresponding to the desired prestress. A method similar to that described
earlier may also be used, whereby the pulley or driving wheel moves only in

the axial direction and the cylinder rotates on a lathe.
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References 5-4 and 5-5 have short discussions on reinforced cylindrical
prestressed concrete structures, or pipes, in which the reinforcement is

either hoop or helically wound,

5.2 ANALYTICAL STUDIES ON BIAXIALLY PRESTRESSED CYLINDERS

Methods were developed to analyze the magnitude of biaxial prestress in
cylinders, and the strength of final composite configurations. The analysis
established ceramic precompression influences by such variables as
reinforcement winding tension and its orientation (helix angle), volume of
the reinforcement, thermal and elastic properties of the ceramic and
reinforcement, and fabrication techniques. Moreover, analyses of cylinder
strengths were made. The level of sophistication in this analytical effort
was similar to that for predicting the strength of flat specimens, which was
developed during the first-year effort. The strength of the cylinder was
expressed in terms of the variables cited above, as well as temperature
and the external loads acting on the cylinder. The analyses were used to
perform tradeoff studies on the factors governing strength of prestressed
cylinders. The results of the tradeoff studies were, in turn, used to select

a cylinder design for experimental studies.

5,2.1 Theory for Internal Prestress and Strength of Biaxially
Prestressed Cylinders

Knowledge of internal stresses in the ceramic, as well as the reinforcement,
is required to estimate the strength of biaxially prestressed cylinders.
Included in this estimate are stresses caused from externally applied loading,
thermal stresses, and stresses caused from mechanical and thermal pre-
stress, To determine these stresses, a two-dimensional stress analysis of
the problem was undertaken for a multilayer anisotropic cylindrical struc-
ture, consisting of a matrix and filaments, subjected to any combination of
the following loads: applied external, normal, or shear forces; internal
prestress; and thermal effects. The analysis applies for the general case
when the material properties of the matrix’'and reinforcement are different,

including different values for the coefficients of thermal expansion. The
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detailed description of the theoretical analysis is given in the Appendix. In
brief, the analysis presented therein allows determination of the stresses in
the constituents caused from pretension of the reinforcement; stresses in
the constituents caused from an external load acting on a composite; and
stresses in the constituents when the composite is subjected to elevated
temperature. The variables in the analysis are: reinforcement volume
fraction, reinforcement orientation (helix angle), reinforcement prestress,
temperature, elastic properties of constitue_nts (ceramic and reinforcement),

and strength properties of constituents.

5.2.2 Theoretical Tradeoff Studies on Biaxially Prestressed Cylinders
¥

Using the analyses presented in the Appendix, tradeoff studies were con-
ducted to determine the optimum wrap angle for a given reinforcement pre-
stress and a given use temperature. The constituent properties used in
these studies were those which were obtained experimentally (see Section 3).
The prestressing material was a 21-strand tungsten cable, while the matrix
was a chemically consolidated zirconia strengthened with 7. 4-weight-percent
of SiC whiskers. The first step in the optimization studies was to determine
the stresses in the constituents as a function of the reinforcement orienta-
tion, reinforcement prestress, temperature, and externally applied loading.
Figures 5-2, 5-3 and 5-4 show some typical results for the stresses in the
constituents of a biaxially prestressed, internally pressurized, cylinder.
The results shown are for a 2-inch internal radius by 0, 25-inch thick
cylinder subjected to an internal pressure of 1, 250 psi. A balanced helix
wrap was assumed. The reinforcement volume fraction was assumed to

be k = 0. 0363.

Figure 5-2 shows the stress in the reinforcement, as a function of the
reinforcement wrap angle, for four values of initial prestress and two
values of temperature. Figures 5-3 and 5-4 show the stresses in the -
ceramic in both circumferential and longitudinal directions of the cylinder
as a function of reinforcement wrap angle. The results shown there are for

the same loading conditions and temperatures as those shown in Figure 5-2.
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The circles in Figures 5-3 and 5-4 show the optimum reinforcement wrap
angles, for a given temperature and prestress, if failure is caused by
excessive stress in the ceramic in the circumferential or longitudinal

directions of the cylinder. The optimum wrép angle varies with temperature.

Using the information shown in Figures 5-2, 5-3 and 5-4, and the allowable
strength values for the constituent (reinforcement and matrix) failure
envelopes were generated for the biaxially prestressed specimens. These

are shown in Figures 5-5 through 5-9.

When calculating the failure envelopes for the cylinders, the following three
failure modes were considered: (1) when the tension stress in the ceramic,
in either the hoop or axial direction of the cylinder, caused from the com-
bined effects of internal prestressing, thermal stress, and applied external
loading, exceeds the allowable tensile sti‘ength of the ceramic at a given
temperature; and (2) when the tensile stress in the reinforcement caused
from prestressing, thermal effects, and applied external loading exceeds
the allowable tensile strength of the reinforcement. The strength of the
cylinder was taken as the minimum of the three failure modes. Figure 5-5
illustrates the three modes of failure for a cylinder subjected to a tempera-
ture of 2, 000°F. For a cylinder havingowj = 0, with a wrap angle between
0 and 50 degrees, ténsién failure would occur in the ceramic in the hoop
direction. Between 50 and 77 degrees, tenSile failure of the reinforcement
would occur; and for wrap angles greater than 77 degrees, tensile failure

would occur in the ceramic in the longitudinal direction,

The optimum reinforcement wrap angle for a given temperature and prestress
can be obtained from Figures 5-5 through 5-9. For example, Figure 5-5
shows that the optimum reinforcement angle for zero prestress.and a
temperature of 2, OO.:O°:F is 77 dégfees. However, there is very little
variation in strength Vbetween the helix angles of 50 to 77 degrees. The
optimum pfestress varies with temperature and, in general, high prestress
is desirable for structures to be used at low temperatures; for prestressed
structures to be used at high temperatures, a low prestress is the most

desirable. For example, comparing the two curves shown in Figure 5-5
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(one foro i = 0 and one foro i = 22, 000 psi) shows that the allowable

applied external hoop stress causing failure at 2, 000°F decreased from
approximately 3, 700 psi for zero internal prestress to 2, 600 psi for 22, 000
psi internal prestress. Figure 5-9 shows that the allowable applied external
hoop stress at 70°F increases from approximately 6, 000 psi for zero internal

prestress to 13,000 psi for 220, 000 psi internal prestress.

5.3 INVESTIGATION OF EXPERIMENTAL METHODS FOR

INDUCING BIAXIAL PRESTRESS
Although there exist several techniques for prestressing cylindrical
structures, only a few are of practical importance. The results of the
literature survey presented in Section 5.1 summarize some of the more

important work in this area.

One of the techniques considered initially involved shrink fitting of metal
bands onto ceramic cylinders. This technique was abandoned because it
induces only a undirectional prestress. The two techniques that were tried

involved bidirectional winding and helical winding.

5.3.1 Polar Winding Mode

The results of a trial winding in the polar mode are shown in Figure 5-10.
The mandrel was made of sand PVA. The end rings with radial pins were
made of aluminum. The purpose of the radial pins was to prevent the
reinforcement from slipping. The highest angle that could be obtained while
winding in the polar mode was 15 degrees. One problem encountered
initially was that the reinforcement rested directly on the sand mandrel.
Since this was highly undesirable, it was then decided to place a layer of
circumferential windings on the mandrel prior to winding in the polar mode.
The circumferential windings raised the polar windings above the mandrel
surface so that the ceramic could penetrate and encapsulate the

reinforcement,
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5.3.2 Helical Winding Mode

Since the theoretical studies indicated that reinforcement orientation angles
higher than 15 degrees were required, a helical winding mode was tried
next. Figure 5-11 shows a cylinder overwound with a 21-strand tungsten
cable, The helix angle is about 57 degrees. Rather than using the hoop
wrap to raise the helical windings above the mandrel surface, as shown in
Figure 5-10, strips running in the direction of the cylinder axis were used,
These would ordinarily be made of ceramic. Studies on the adhesion
between the newly cast ceramic and a preformed, precast ceramic indicated
that a good bond could be formed between the two. The main reason for
using the ceramic strips was to ensure the complete encapsulation of the
reinforcement in the ceramic. If the reinforcement were left exposed on the
inner surface of the cylinder, as would be the case if the fabrication technique
depicted in Figure 5-10 were used, rapid oxidization of the reinforcement

would occur when the structure was exposed to elevated temperatures.

5.3.3 Preliminary Fabrication Studies

Two biaxially prestressed cylinders were fabricated using the filament
winding technique described in Sections 5. 3.1 and 5. 3. 2. The first trial
cylinder was fabricated using the polar winding technique. First, teflon
tape was wrapped on the sand mandrel, then, a layer of 21-strand tungsten
cables. The overwound unit was placed in a cylindrical container and the
surrounding space was infiltrated with a ceramic. Since this was a practice
run to uncover problems in preparing biaxially prestressed specimens, the
ceramic used did not contain any SiC whiskers--it was a conventional
chemically consolidated ZrO;, developed during the first-year effort
(Reference 5-6). |

Figure 5-12 shows an internal view of the first trial cylinder. One of the
serious problems encountered was the presence of abnormally high porosity,
as is obvious from Figure 5-12. Apparently, the reason for this was that
when the cylinders were cast vertically in aluminum molds, the gases could

not readily evolve through thel2-inch height of the ceramic.
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The second trial cylinder was made by first placing longitudinal ceramic
strips (0.10 x 0.40 x 7.0 inches) on the sand mandrel, and winding the
reinforcement over the strips, as described in Section 5. 3. 2. The assem-
bly was then placed in a cylindrical aluminum mold and infiltrated with a
ceramic slurry. Use of this fabrication technique prevented exposure of
the reinforcing material. For the second cylinder, the reinforcement was
wound at approximately a 45-degree helix angle. Although the second
cylinder also exhibited abnormal porosity, the information obtained from
this work was sufficient to establish the best mandrel design for making the

final test specimen,

5.4 DESIGN OF BIAXIAILLY PRESTRESSED CYLINDERS

On the basis of the work described in Sections 5.2 and 5. 3, a biaxially
prestressed cylinder design was selected for the experimental effort. The
design selected was used to demonstrate the superior, high-temperature,
strength-to-weight characteristics of biaxially prestressed ceramic, and
to verify validity of the theory. The fabrication procedure described in

Section 5. 3 also had an influence on the final design.

In the final cylinder design, a 21-strand tungsten cable was used. A 57-
degree helix angle was selected. The cable pretension was chosen as
Owi = 21, 000 psi. Even though it would be desirable to have&wi = 0 to
achieve optimum strength at’high temperature (see Figure 5-5), winding

with zero cable tension was considered to be impractical.
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Section 6
FABRICATION OF BIAXIALLY PRESTRESSED CYLINDERS

Following the preliminary fabrication studies and optimum cylinder con-
figuration design, two steel mandrels were built for fabricating the final
cylindrical test specimen., Biaxially prestressed ceramic cylinders,

strengthened with SiC whiskers, were then fabricated.

6.1 FINAL MANDREL CONFIGURATION

Two metal mandrels were fabricated for making the final test specimens.
Figure 6-1 is a photograph of an assembled and disassembled mandrel
showing the various components. The mandrels were made of steel coated
with a permanent teflon coating to prevent adherence of the cast ceramic to
the mandrel. The pins in the end rings were for the purpose of achieving

uniform spacing between the prestressing cables, and to prevent cable

slippage.

The mandrels had an outside diameter of 3. 75 inches for a distance of
7.0 inches, There were 24 pins in the end plugs. These were used
to achieve uniform spacing of 0.49 inch between the helically wound, pre-

stressed cables,

6.2 FABRICATION OF FINAL TEST SPECIMEN

To fabricate the final test specimen, additional filament winding work was
performed to finalize the winding setup., Appropriate modifications were
made in casting the ceramic and also in the cure cycle to obtain good quality
specimens, Finally, the cylinders were ground to the size required for

testing.
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Figure 6-1. Teflon-Coated Steel Mandrels for Fabricating Biaxially Prestressed Cylinders



6.2.1 Filament Winding of Pretensioned Reinforcement

The mandrels and guide-eye tooling were fabricated, inspected and set up
preparatory to tool trial winding, Several trial windings were performed

before a proper interrelationship was obtained between the following:

1. Lathe crosshead rate, that is, the axial movement of the mandrel.

2. Axial speed rate of the mandrel in relation to its circumferential
speed (coarse adjustment).

3.. Vernier adjustment for the angular rotation of the mandrel by means
of the variable speed reducer.

4. Control of mandrel axial travel by setting the reversing limit stops
in order to develop the proper dwell time while maintaining cable
tension.

5. Horizontal and vertical positioning of the guide eye in relation to the

mandrel axis. This setting has an effect on the amount of cable
bending as well as the location of the axial travel reversing stops.

The proper interrelation of the above settings was necessary to establish the
desired winding pattern, Determination of the proper setting was accom-
plished by trial and error as the axial travel stops and variable speed
reducer lack vernier precision control. In addition, it was necessary to
establish control methods, or account for, the following nonadjustable
variables inherent to winding th‘e specimen configuration: stability of cable
crossover; height of the ceramic strips; constantly changing effective speci-
men diameter; precise repeatability of each winding pass or cycle;
repeatability of assembling the mandrel (specimen to specimen); and
uncontrolled deflection of the mandrel at the guide eye caused from cable
diameter discontinuities against the guide-eye surface. The small individual
errors introduced by the nonadjustable variables almost precluded winding

a perfect pattern, Therefore, manual machine adjustments were made
intermittantly as necessary during specimen winding to compensate for these

variables,

After several more trials, and introduction of several corrective procedures
during the filament winding operation, the following fabrication procedure

was established and used to helically wind.the pretensioned reinforcement:

1., Clean mandrel detail parts,

2. Spray and sinter teflon dispersion onto all mandrel surfaces.
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. Apply colloidal copper to all slip-fit and threaded joints,

Assemble mandrel and locate per re-established indexing.

Install the mandrel assembly into the filament winding machine,

Melt beeswax into mandrel faying surfaces,

~ O~ Ul oW W

. Sweep-in plaster into the groove adjacent to the mandrel end caps
(see Figure 6-1).

8. Apply double-back tape to the cylindrical surface of the mandrel,
9. Mount ceramic strips to the double-back tape (12 axial locations).
10, Check winding machine and tension settings.

11. Anchor the 21-strand tungsten cable to outboard end of the mandrel
shaft,

12, Take up slack in systems and manually adjust mandrel position in
preparation for winding,

13, Commence winding first helical pass.

14, Check the winding angle of the first helical pass with a template
during the winding operation, making manual machine adjustments
as necessary.

15, Continue with subsequent winding passes.
16, Check cable~to-cable spacing during subsequent winding passes.

17. Make a template check of the helix angle at the sixth, twelfth, and
eighteenth pass.

18, Anchor the tungsten wire cable to the outboard end of the mandrel
shaft upon completion of the twenty-fourth pass,
19. Cut the tungsten wire cable,
20, Wrap the dome ends of the mandrel assembly with teflon film tape.
21, Remove the tungsten-wire-wound mandrel assembly from the fila-
ment winding meachine,
The above sequence, with minor variations in technique, was utilized to
filament wind the required final specimens prior to ceramic matrix casting
operations, To ensure the accuracy of the cable tensioning device that was
used, it was calibrated prior to winding. The calibration was made by
winding a 21 -strand tungsten cable onto a thin aluminum cylinder which was
strain gaged on the inner surface, The strain gage readings were related to

the tensionmeter settings to obtain a precise tension in the cable.

Figure 6-2 shows a cylinder during the winding operation, The final over-
wound cylinders were similar in appearance to that shown in Figure 5-11;
except that they were fabricated on the steel mandrel rather than the sand
mandrel,
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Figure 6-2. Mandrel Partially Overwound With 21-Strand Tungsten Cable
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6.2.2 Application of Ceramic to Cylinders

The ceramic matrix, reinforced with 8 parts SiC whiskers, was blended

in a V-blender for a minimum of 30 minutes, The material was then removed
from the blender, and screened through a 35-mesh screen to eliminate
agglomerated SiC whiskers. The blended powders were placed into a
porcelain dish and 32 parts HpPO3F acid was added. After hand blending
the powder and binder for 15 minutes the mix was placed on a Syntron
vibrator and agitated for 30 minutes. The mandrel, with the prestressed
cable wound on it, was suspended between supports and part of the mix was
troweled onto the mandrel and forced between the wires., When the coating
covered and surrounded all wires, the mandrel was placed into an oversized
casting mold, which consisted of two half-cylinders held together with hose
clamps. The inside of the cylindrical mold was lined with cotton, to wick
the gases. On top of the cotton lining was placed a perforated teflon tape to
act as a release agent., The mold was then mounted on a Syntron vibrator.
The shaft of the mandrel rested on a removable support which raised the
wound portion of the mandrel above the bottom of the external mold as shown
in Figure 6-3. The ceramic was then infiltrated into the space between the
overwound cylinder and the external mold, as shown in Figure 6-3, The
support was then removed, which caused the mandrel to drop down and force
the ceramic up the sides of the external molds. The whole assembly was
vibrated during the entire operation., This semi-extrusion process appeared

to work quite satisfactorily, and yielded specimens with low porosity,

6.2.3 Curing of Cylinders

After the casting was completed, the whole assembly (shown in Figure 6-3)
was placed into a Blue M Oven for curing. The specimen was cured according
to the schedule shown in Table 6-1, The extended cure schedule was used to
assure a better evolution of the gaseous by-products of the reactions. The
specimens remained in the mold until cured to 600°F, and cooled again to

room temperature,
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Table 6-1
CURING SCHEDULE OF BIAXIALLY PRESTRESSED CYLINDERS

o Temperature oc Period (hours)

77 9 20 £ 5 16

150 +18° 66 + 10

180 £ 9 82 = 5 2

212 100 16

300 149

300-600 149-316

600 316

6.2.4 Machining and Instrumentation of Biaxially Prestressed Cylinders

The machining of specimens to final dimensions (see Figure 6-4) consisted
of three operations, For the first operation, the specimen was mounted in

a Brown and Sharp grinder, Using a diamond wheel, the O, D, and gage
length were roughed in, The second operation was accomplished on a

Landis grinder using a silicon carbide wheel with a 4-inch-radius pre-cut on
the wheel, With this equipment, the 4-inch radius was blended into the gage
length and final finish was obtained, After this operation, two hoop and

two axial strain gages were placed within the 3-inch test section of the
specimen and strain readings were taken. The gages were located 180°
apart, It is noted here that during the whole grinding operation the specimen
remained on the steel mandrel, Finally, after the instrumentation, the
specimen was transferred to another Landis grinder to cut off the two ends,
The specimen was then removed from the mandrel and the final strain reading
was taken, The two st.rain readings were used to obtain the precompression
of the ceramic which occurred when the cables were cut off and the specimen

was removed from the mandrel.

Figures 6~5 and 6-6 show two of the completed specimens ready for testing,
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Figure 6-5. Biaxially Prestressed Cylinder BC-5
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Section 7

TESTING OF BIAXIALLY PRESTRESSED CYLINDERS

Four types of tests were performed on the biaxially prestressed cylindrical
specimens: room-temperature, hoop-tension tests (1:0 stress ratio), room-
temperature, biaxial-tension tests (2:1 stress ratio), elevated-temperature,
hoop-tension tests (1:0 stress ratio), and high velocity ballistic impact tests,
To perform these tests, appropriate test fixtures were designed, fabricated

and checked out.

7.1 HOOP TESTING AT ROOM TEMPERATURE

Prior to performing the actual tests, the test setup was checked out. Trial
cylinders made during the preliminary fabrication studies were used to
checkout the test setup. Since there were no standard techniques for per-
forming the desired tests, the results of the preliminary testing were used

to modify, whenever necessary, the developed testing procedure.

7.1.1 Description of Test Fixture and Instrumentation

To conduct the uniaxial and biaxial tests on the biaxially prestressed
cylinders, special end plugs were designed and fabricated. A sketch of the
final test setup is shown in Figure 7-1. The actual components used in pres-

sure testing of cylinders are shown in Figure 7-2.

As noted in Figure 7-1, the end plugs were unbonded and clamped externally
when conducting hoop-tension test; they were bonded to the ceramic cylinder

with an epoxy resin when performing the biaxial test.

The test section on the inside of the ceramic cylinder was first coated with a
rubberized paint, Next, a thick, rubber cylinder was inserted. Finally, a
double rubber balloon bladder was inserted as shown in Figure 7-1 and the
end plugs were placed in position. The end plugs were restrained against

axial movement with external C-clamps. The final test setup is shown in
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Figure 7-3, Water-oil solution was used to pressurize the eylinders. A
pressure transducer was used to monitor pressure during the test. Axial and
circumferential strains were also monitored on the x-y recorder during the
test, Each test cylinder was instrumented with two axial and two hoop gages

placed 180 degrees apart at the midsection of the cylinder.

7.1.2 Test Results for Room-Temperature Hoop Testing

Three hoop tests were performed, one on a trial cylinder to checkout the test
setup, and two on final cylinders. The test results are shown in Table 7-~1,
which also gives other pertinent data for the final test specimens. To prevent
blowing out of the plugs, and ensure that there was no leakage between the
plugs and the ceramic cylinder, the test setup shown in Figure 7-3 was
slightly modified. Rubber gaskets were placed on the two ends of the
cylinder, The cylinder was then clamped between aluminum plates. The
latter test setup worked satisfactorily. At failure, longitudinal cracks were
noted in the test section, as was expected. Figure 7-4 shbws a failed speci-

men that was tested in hoop tension,

7.2 BIAXIAL TESTING AT ROOM TEMPERATURE

Biaxial tension tests were performed on prestressed cylinders, The
cylinders were provided with end closures so that a 2:1 stress ratio existed

in the cylinder upon pressurization,

7.2.1 Description of Test Fixture and Instrumentation

The test setup used in biaxial testing was similar to that used in uniaxial
testing, except as is noted in Figure 7-1, the end closures were bonded to
the ceramic cylinder., Moreover, to obtain a 2:1 stress ratio in the cylinder,

no external clamps were used.

To ensure that the ceramic cylinder would not fail due to stress concentration
at the end of the taper of the end plugs, slots were made in the tapered portion
of the plugs. The slots were approximately 0. 3-inch long and were spaced at

approximately 0.7 inch around the circumference. Also, instead of coating the

inside of the specimens with a rubberized paint, a cylindrical rubber sleeve
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Figure 7-4. Hoop Failure of Cylinder BC-4
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was bonded on the inside of the ceramic cylinder, Otherwise, the components
and instrumentation used for biaxial testing were identical to those used for

hoop testing.

7.2.2 Test Results of Room-Temperature Biaxial Testing

The biaxial te ét setup worked satisfactorily and excellent results were
obtained. Both cylinders failed in the test section. No failures such as
cracking, were noted in the ends. The test results for the cylinders sub-
jected to biaxial tension are shown in Table 7-2., Figures 7-5 and 7-6 show
two specimens after failure., As is readily seen, specimen BC-6 failed by

overall failure, that is failure of the ceramic and the reinforcement,

7.3 HOOP TESTING AT ELEVATED TEMPERATURE

Elevated temperature uniaxial hoop tension tests were performed on biaxially
prestressed cylinders. In order to perform these tests, it was necessary to
design and fabricate the test setup and test fixtures. The elevated tempera-

ture tests were performed at =2, 000°F,

7.3.1 Description of Test Setup and Instrumentation

For safety reasons, the elevated temperature hoop tensile tests were per-~
formed in a bomb shelter. A schematic diagram of the test setup is shown
in Figure 7-7. The test cylinder and fixture are shown in Figure 7-8. As
shown, a stainless steel bladder was welded onto a stainless steel mandrel,
Nitrogen gas from a bottle was metered into the mandrel to pressurize the
bladder. At 2,000°F the stainless steel bladder is quite soft, and contri-

buted practically nothing to the load-carrying ability of the ceramic cylinder, *

Heating was accomplished through the use of four ceramic-backed wire-
wound heating elements., These were rectangular plates arranged in a
square box around the specimen., Power to the heating elements was man-
ually controlled through the use of a powerstat. Two chromel-alumel
thermocouples were attached to the test section of the cylinder to monitor

the temperature. Fire bricks were placed around the heating elements for

*See note (2) in Table 7-3 for the numerical estimate of the effect of bladder.
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insulation. The furnace was sealed with Sauereisen cement to prevent air
from entering the furnace. Argon gas was pumped into the furnace during

heating and testing.

Pressure was monitored by a pressure transducer placed in the line between
the metering valve and the test sample. The transducer was located about
2 feet from the test specimen. The pressure indicating signal from the

transducer was recorded on a Moseley x~y recorder.

7.3.2 Test Results for Elevated-Temperature Hoop Testing

One of the trial cylinders made during the preliminary fabrication studies
was used to check out the test setup. Following this, tests were performed

on final specimens. The test results are shown in Table 7-3.

Cylinder BC-10 was tested first. The heating time from 70°F to 2, 000°F

was 2 hours. Near the end of the heating time, both thermocouples were lost.
When the new ones were inserted into the heating furnace, the specimen tem-
perature had gone up to about 2, 300°F. Altogether, the specimen remained
for 1 hour at a temperature of 2, 000 to 2, 300°F. After installation of the new
thermocouples, the temperature was decreased to 2, 000°F and the cylinder
was tested using nitrogen gas. The cylinder failed at a pressure of 300 psi

(hoop stress of 1, 980 psi).

The failed specimen (BC-10) contained numerous cracks in the built-up ends,
and also several longitudinal cracks in the test section. Examination of the
stainless steel bladder showed severe oxidation. In several spots the bladder
appeared to have oxidized through the wall thickness. It was not obvious if
the oxidation was caused by the gases given off by the ceramic specimen
when it was heated up, or by air which might somehow have entered the test

furnace (it is noted here that the test was conducted in an argon atmosphere).

To avoid problems encountered during testing of cylinder BC-10, certain
modifications were made when testing cylinder BC~-9 at 2, 000°F. The thick-
ness of the stainless steel bladder was increased from 0, 020 inch to

0.035 inch. Moreover, a thin layer (approximately 0, 001-inch thick) of hard

chromium plating was electro-deposited on the outer surface of the bladder.
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The ends of the ceramic specimen (flat portion) were overwound with two
layers of 7-strand tungsten cable to prevent cracking at the ends. The
required amount of end overwrap was determined from analysis. Finally,
the heating furnace was resealed to prevent entrance of air into the test

chamber.

The modified, elevated-temperature, test setup worked satisfactorily. The
thermocouples were lost at 1, 860°F when the cylinder was heated; therefore,
the cylinder was held at that temperature for about 10 minutes and tested.
The hoop burst pressure was 840 psi. Figure 7-9 shows a photograph of a
failed specimen, BC-9, which was tested at 1, 860°F. Longitudinal cracks
are present in the test section, which is typical for this type of loading. The
stainless steel bladder had several longitudinal cracks at failure. Table 7-3

shows the test results of the elevated-temperature testing.

7.4 BALLISTIC-IMPACT TESTING

Ballistic-impact tests were performed on biaxially prestressed cylinders,
The main purpose of these tests was to establish the failure mode, and
failure progression, including the ability of prestressing material to stop a

catastrophic failure of the ceramic.

The tests were performed using a 30-06 rifle (approximately 30 caliber),
Both armor-piercing and ball-type ammunition were used., The weight of
the projectiles was 150 grains, while their impact velocity was 2, 860 feet
per second. The target was located 30 feet from the rifle. The test was
completely automated and was performed at the MDAC-WD ballistic impact
facility.

The failure area of a specimen subjected to armor-piercing projectile is
shown in Figure 7-10, while Figure 7-11 shows the failure area caused by
the ball-type projectile. In both cases the projectiles penetrated through the
cylinder walls., No catastrophic failure of the ceramic took place. The
reinforcement did prevent crack propagation., Local failures occurred where

the projectiles entered and exited the specin‘lens.
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Figure 7-9. Failed Specimen BC-9 Tested in Hoop Tension at 1860°F
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PRECEDING PAGE BLANK NOT FILMED.

Section 8

EVALUATION OF TEST RESULTS AND TEST THEORY
CORRELATION FOR BIAXIALLY PRESTRESSED CYLINDERS

The experimental results reported in Section 7 for biaxially prestressed
cylinders subjected to biaxial stress at room temperature, as well as uniaxial
hoop stress at room and elevated temperatures, were compared with the
theoretically predicted results. The comparison between experiment and

theory is shown in Table 8-1,

The theoretical results shown in Table 8-1 were predicted using the theory
given in the Appendix, Since the cylinders were cured while still on a steel
mandrel, it was necessary to consider not only the mechanical prestress of
i - 21, 000 psi applied during the filament winding, but also the thermal
prestress induced in the cables because of thermal expansion of the mandrel,
At cure temperature of 600°F, the difference in the coefficients of thermal
expansion between the steel mandrel and the tungsten cables gave rise to a
57,400 psi thermal pretension in the helically wound, 21-strand tungsten
cables, The ceramic consolidated at 600°F; therefore, upon cooling to 70°F,
the precompression induced in the ceramic was caused from mechanical as
well as thermal prestress in the cables. Thus, the total equivalent initial
pretension in the cables, inducing precompression in the ceramic, was

78, 400 psi, The strength of the cylinders subjected to various types of loading

was based on the latter value of the prestress,

The mechanical properties of the prestressing cables and of SiC-whisker-
strengthened ZrO2 that were used in the analysis were those measured
experimentally, and are discussed in Section 3. These properties as well

as cylinder dimensions and other pertinent data are summarized in Table 8-2.
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In general, the agreement between experimental and theoretical results is
quite good. Some of the most likely reasons for the discrepancy between
experiment and theory are:
1.  The allowable strength of the ceramic was higher than the values
used in the calculations.
2. The total prestress, 00 Was higher than 78,400 psi.

3. The modulus of elasticity of tungsten cable was higher than
27.1 x 100 psi,

In conjunction with item 1, it was noted that the quality of the ceramic in
biaxially prestressed cylinders was much better than of the flexure speci-
mens which were used to obtain the ceramic properties data used in the cal-
culations. Thus it is quite possible that the strength of the ceramic at room
and elevated temperatures was higher than the values shown in Table 8-2.
As to the modulus of elasticity of the 21-strand tungsten cable, it was noted
in Reference 8-1 that the strength of the wire imbedded in the ceramic, and
thus restrained against untwisting, was much higher than the strength of the
cable tested by itself. A similar effectwouldalso be expected in the modulus
of elasticity, that is, the modulus of elasticity of a cable restrained against

untwisting would be expeccted to be higher than that of a cable free to untwist.

Although the room temperature strength of the biaxially prestressed cylinders
could have been increased significantly by increasing the prestress, this
would have resulted in low strength values at 2,000°F, as was discussed in
Section 5. The strength values obtained at 1,860°F andat2,000°F do indeed
demonstrate a significant improvement over the strength of unreinforced,

unprestressed zirconia.

REFERENCES FOR SECTION 8

8-1. L. B. Greszczuk and H. Leggett. Final Report--Development of a
System for Prestressing Brittle Materials. Douglas Aircraft Company

Report DAC-49200, August 1967.
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Section 9 _
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

On the tasis of studies performed to.date, it has been shown that significant
increases in the room and elevated temperature strength of zirconia can be
achieved through addition of SiC whiskers: A 7. 4—weight—nefcent of SiC
whlskers increased the average ruom temperature flexure strength of zir-
;-coma from 4,900 psito 5, 620 psi. The higkest strength obtained was 7,620 psi.
A At 2,000°F, the addition of whiskers increased the 2 verage flexure sttength
"of zirconia from 165 psi to 1,520 psi- Highest strength obtained at 2, 000 °F
was 2,620 psi. Further imprbvem’ents in the tensile load carrying abflity of
i the whisks: .-strencthened zirconia: were obtained by prestressing the matnx
with lugh-stl ensth, h gh-modulus, t\mgsten cables. The prestressmg
material not fnly 1ncreased the tcnsile load carryulg abxhty of the- ceramlc. -

- but also 1mparted some ductlhty to the britile ceramic matenal.A

-

. Ine addition to the uniajcially ’prestressed sp'écimens that i;re;e fabr'icatedarid
evaluated, a concept of biaxially prestressing cylindrical shells has been

_ _dévelope&, demonstra;téd and evaluated. In conjm;ction; wit;h‘thfs work, a
‘theory has been developed for predicting the st‘i-exigth'pf biaxially prestressed
ceramic éylin;ie rs subjected to external loading and thgrmal environment.

To verify the theory and demonstrate the ,efficien‘cAy of biaxially prestressed
Cylinders,.:; rumber of biaxially prestréssted_ cylinders were designed, fabri-
cated and tested. 'Th_e following types cf tests were conducted: internal
-irad~ia1 pressure at room temperat_ure. internal hydrostatic pressure at room
temperature, internal radial pressure at2,000°F and high-velocity ballistic-
impact tests. To conduct theﬁbo‘ve tests, test methods we ré developed for
uniaxial and biaxial testing of ceramic cylinders at room te"mpeAra'tture and
also for uriaxial testing of cylinder§ at2,000 “VF.. These test methods were

“highly successful and yielded e;tcellent data.
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For a cylinder prestressed with 3.4 volume percent of 21-strand tungsten.
cable. the hi\ghcst hoop strength obtained at room temperature was 10,940 psi.
At 1860°F the highest hoop strength obtained was 5,740 bsi. Fér biaxially
prestressed cylinders sukjected to high velocity impact loading (2, 860 ft/sec)
using an .rmor piercing projectile, the failure area was localized and nean-
catastrophic. The prestressing material stopped completely any crack

_-propa gation.

For the biaxialiy prestressed, internally pressurized cylinders, a fair agree-
ment was obtaine . between experiment z;nd.tl:eox'y for the failure bre ssure.
The theory predicted lower failure pressures than the ex;} :rimental values.

It appeared thai the strength of ceramic ia the cylinders was higher than the
strength of ce;'amic obtained from the flexure tests. on whicn data the theo-
retical predictions for the cylinder strength were based. The quality of the
cylindrical specimens was much better than the quality of the flexure

specimens..

The :therrﬁal shock 2nd thermal cyclirig i;géts perfdrmed 61{uniaxially<p're—
stressed épgcimens “ave cohcrlusively dérnonfs.tratcd the 'abiiij:} of the pre-
stressing material o prevent tih'ex"x'nafl~ shi;ck failure. Some ﬁn:usuallbehavi.or
of tﬂe Sic t'w'hisl\t\"e;—sti‘engthened zirconia was noted at = 1, 500°F. At that
temperature tfle str ongth and modulus dipped to their lowest values. The.
sr2cimens also exuibitcd: high ductility. When testing the specimens above
l,,SOO‘thhe strength and kmo‘dulus‘., increased, and the’spec?mens failg:‘d_ in a
Br"ittlo manner. Additional studi\esr are recommended o thiks»phengmenon,
and also on how to eliminate it. Preliminary studies in;rolving héat treating
-of the ceramics indicate that it may be possible to eliminate the temperature

region of low strength. =

After thermal shock testing of the prestressed s‘pecimens, it was noted thai
;}hcn they were ‘tested at room tefnperature, their flexure strength was sig-
_nificantly higher (~20%) than the flexure strength of prestressed specimeas
which were not thermal shock tested. These specimens had also much higher
flexure strengths than the specimens which were thermal cycled slowly under

similar *' « .17 »ment. Thus it appeafs that the rate of heating does
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affect the strength of prestressed ceramic. The reason for this behavior is

not apparent and deserves further investigation.

Investigation of the test data on uniaxially and biaxially prestressed speci~
mens indicates that significant amount of yielding takes place in the reinforc-
ing material, especially at high test temperatures. It appears desirable,
therefore, to extend the existing elastic analysis to the case where the
prestressing material does undergo elasto-plastic deformations. Other
areas on which studies are recommended include:

1. Additional fabrication and testing of biaxially prestressed cylinders

incorporating various types of prestressing materials, different
prestress levels, and different contents of prestressing material.

2. Studies on mixing techniques to achieve better, more uniform dis-
persion of whiskers in the ceramic matrix.

3. Studies on fabrication of prestressed complex shapes other than
cylinders, leading to a development of a prototype hardware
component.

4. Further characterization of the matrix, especially its compressive

strength and its properties above 2, 000°F.
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APPENDIX

ANALYTICAL STUDIES ON BIAXIALLY
PRESTRESSED CERAMIC

To estimate the strength of biaxially prestressed cylindrical configurations,
the knowledge of the internal stresses in the ceramic as well as the rein-
forcement is required. This includes the stresses due to an externally
applied loading, as well as those due to mechanical and thermal prestress.
The analysis presented herein permits one to calculate the required quan-
tities. This analysis is a generalization of the results presented in Refer-
ence [1] where the problem of predicting the strength and internal stresses

in a ceramic uniaxially prestressed with continuous filaments was considered.
In the present analysis the problem of a multilayer anisotropic structure is
investigated. The stresses that are analyzed are the internal stresses in the
constituents due to pretension in the reinforcement, the stresses in the con-
stituents due to an externally applied loading and also the thermal stresses
arising in the constituents when the composite is subjected to elevated tem-
perature. The analysis is also applicable, by superposition, to various
combinations of loading. In the present analysis it is assumed that the matrix
is cast around pretensioned fibers, and that the end restraints, by means of
which the pretension is applied, are removed after the consolidation of the

matrix has taken place.

1.0 DETERMINATION OF STRAINS AND STRESSES IN PRESTRESSED
CERAMIC

Assume the initial preload per reinforcement is f and there are n reinforce-

ments per inch. Throughout the report tension stresses will be positive and

compressive stresses are negative. *

*The nomenclature is given at the end of the Appendix.
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Filament

Matrix
foo f
f 5 f

Figure 1. Applied Preload

Equation (1) is obtained from the requirement of equilibrium of internal
forces, where Nc is the force in the ceramic and Nw is the force in the
reinforcement. Also strain compatibility requires that the strain in the
longitudinal direction, i.e., the direction of the reinforcement, must be the
same for the reinforcement and ceramic as given in equation (2). The total

applied preload is given by equation (3).

NP +NP = 0 (1)

C W
EcL T fwL T LP (2)
p, = nf (3)

The longitudinal strains in the ceramic and reinforcement are given by equa-

tions (4) and (5), respectively.

_ C
‘L - A& (4)

‘wL - A E (5)

180



Where Ap,, repre sents the loss in preload in the reinforcement during
compression of the ceramic. The remaining preload in the reinforcement

is given by equation (6).
- Ap (6)

Solving equations (1), (4), (5) and (6) simultaneously for NE yields equa~
tion (7).

= (7)

The longitudinal strain is obtained by simultaneous solution of equations (4)
and (7). Using equation (8) and Maxwell's reciprocity theorem the transverse

strain is obtained.

-p
€ = W (8)
Lp - AE TAE
Cc C wwW

c _ 1T Py (9)
Tp = A E +A_E
cC C W W

The stresses in the ceramic and reinforcement in the direction of the rein-

forcement are given by equations (10) and (11), respectively.

NP
“EL - 'A'E (10)
[of
NP
oL A (11)
W
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2.0 DETERMINATION OF COEFFICIENTS OF THERMAL EXPANSION

Strain compatibility requires that the strain in the reinforcement and ceramic
must be equal, therefore if the coefficients of thermal expansion of the con-
stituents are not equal, thermal stress is introduced and the strain compati-

bility equation can be written as follows:

o1 ol
T _ wl, cL,
€, = aWAT+E = aAT+E (12)
w c
Equilibrium requires that the sum of the forces in the ceramic and rein-
forcement equal zero as given by equation (13).
T T _
O_WLAW + GCLAC =0 (13)

Solving equations (12) and (13) simultaneously for the longitudinal thermal

strain yields equation (14).

(¢ ~a ) AT
W C
EcAc
1+E——-———-—A
wWoWwW

The coefficient of thermal expansion in the direction of the reinforcement is

€ = Q’CAT + (14)

T
L

given as follows:

(¢4 = (15)

(@ -a )E_A
W ¢ Tww (16)

L c E A +E A
ww c ¢
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For composites incorporating low volume fractions of reinforcement, the
approximate expression for the coefficient of thermal expansion in the trans-~

verse direction is:

o = (17)

Therefore,

T _
€T = aCAT (18)

The strains in any direction may be obtained from the principal strains using

the following relations (Ford [2]). The coordinate axes are shown in Figure 2.

643 cos2 B sin2 B cos P sin B €L
ee = sin2 B cos2 §] ~-cos B sin €T (19)
Y¢9 -2 cos B sin B 2 sin B cos B c:os2 B - sinzﬁ YLT

Similarly, the coefficients of thermal expansion are obtained from:

a4 cosZB sin2 B cos B sin @8 ar
ag = sin2 B coszﬁ -cos B sin B ozT (20)
Y -2 cos B sin B 2 cos B sin B cos2 B - sinZB 0
T
o

P
-~
/Tﬁ L

P
i
\

Figure 2. Coordinate Transformation
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3.0 STRESS-STRAIN RETLATIONS

The strains in a single layer may be expressed in terms of stresses as
follows where the equations given by Chao [3] or MIL-HDBK-17 [5] have

been modified to include thermal effects.

. 7 - s 1 =
i i i i i
% Al Az Ais | e
i _ i i i ol
“g A1 Bz Ao 0 (z1)
i i i i i
“$0 L A31 Az B33 | Tee |
Where:
i i
g o = AT
: L AT (22)
(’?e Ee - O/G )
i i AT
(‘d)e - che - CY¢6
o ost i 2py 7 ] .
Ay Slg ey U; by Gl - ELT sin? B cos2 B
T 1L | LT L |
. i 2 ]
sin B | cos P 1 LT| . 2 2
A ~ + - sin B cos B
22 El ET _GLT EL .
n 2
A33 4 Fl—- + ];L + -E—-I-J—l] sinz B cos2 g+ G [coszﬁ - sin2 )3}
‘LT LT LT
1 1 .2 2. MLuT o4 4
A12 A21 B 4 - g | sin B cos B =~ D sin B tcos 8
L T LT L
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13

23

31

32

1 2T 2
LGLT EL EL_

| T
G B P

. 3 1 2brT o
sin Bcos™ B - ¢ - -
| LT L T]
- .
sin3 B cosp- L. ZHLT - A
LGLT EL ETd

sin3ﬁ cosfP

sin B 00536

The stresses in a single layer may be expressed in terms of strains by
equations (23) (See Chao [3] or MIL-HDBK-17 [5]).

Q
© =

For any given layer i,

11

22

-+

1

1 -

P ML

i i
By, Bis

i i
By Bys

i i
Bsa  Bis

4 . 4
gEL cos B + ET sin” § + (ZEL By

. 2 2
4GLT [l - B HTL]) sin P cos ﬂ%

1

1= ppp Ppg

4 . 4
iET cos B +EL sin” B +<2E

.2 2
4GLT [l = Py HTL]) sin” B cos Bi
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1 2 2
B = E +E.,~2E_p sin” Bcos B
I Wi —r— ?( LT L TL>

2 2.}
+GLT l-uLT uTL) (cos B~ sin B

1 3( [ .2 2
B = B = E. +E. - 4G 1-p H ]51n Bcos B
12 21 1. Ry, BT L T LT LT "TL
+ EL Krr, (cos4 B + sin4 6)%
B =B = ———;—-g(E -E_pn -2G [l-p. M ] sin3ﬁcosﬁ
13 31 T Topgpp ppp U T LMTL LT LT ML
-lE, (1 -« p..)-2G 1-p K sinBcos3B
1, TL LT TL "LT
B = B = —-——-——1——-—3(E -E_u - 2G [1—u K ])sinﬁcos3 B
23 32 1- K1, HLT T L"TL LT LT TL

- (EL [1 - 'J'TL] - ZGLT [1 = Bopr, “LT]) sin3 B cos Bf

The equivalent external force on the total laminate can be expressed in terms

of the total strain of the laminate by equation (24).

Ng Ci1 €12 Cuzl | %
Ng | =1C21 ©C22 Ca3| | % (24)
| Se6 | | €31 C32 Csz3| | Yoo |
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Where:

S¢9

T P F
N¢,-N¢+N¢

T
6

F
Ng - N§ + Ng (25)

T P F
S¢e- S¢6 + S40

Where N'dI;, Ng and Sge represent the equivalent direct and shear force

required to resist strain due to thermal effects and are given by equations

(26).

T
N =
¢
n
T _
NI -1 S
i=1
T
S¢e

=1

pd

The forces Ng,

n
i i i i i
AT Z (311“¢t1+312°9t1+313 “¢6ti)
i=1

(

i i i 1 i i
BZZ a ti + BZlacbti + BZBQ¢9ti) (26)

n
i} i i ii, L ni i,
- T ) (B33 “o8f T B31%h T Baz“e'%)

Ng and Sge represent the forces due to preloads and are

given by equations (27), where the effects of Poisson's ratio is ignored.
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n
NP = z cos2 ﬁlp:”
i=1

n
p_z L2 0id
Ne— sin Bpw

i=1

n
. i i
-1/22 sin 2P P,

i=1

p

The forces Ng, Ng and Sge represent the applied external force. The

coefficients Cij are given by equation (28) (Ambartsumyan 4D.

-t/2

(28)

where t is the thickness of the multilayer laminate. The values of Cij are

obtained by numerically integrating through the thickness.

The resultant strains due to internal stresses are given by equations (29).

6 €11 C12 Ci3 |-l N
‘e | 7 1Ca1 Ca2  Co23 Ng
Y40 fal Cs,  Cs33 Spe

(29)

The stresses in each layer of the laminate are now obtained by substituting

equations (29) into equations (22) and substituting the resulting equations into

equations (23). The stresses in any given layer direction (x, y) can now be

obtained from equations (30) (Ford [2]).
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Figure 3. Stress Transformation

- .07 T . . . T ;T

i 2 i .2 i . i 1
" cos Y sin sin2y ‘T¢
cr; = sin2 e c]os2 gt -sin2yt ‘7(19 (30)

i . i . i 2 i . 2 1 i
T -1/2 sin2¢ 1/2 sin2y” {cos™ ¢ - sin" ¢ T 66
REA NN L

The composite stresses in the filament direction, L, and transverse to the
filament, T, resulting from the stresses given in equation (23) can be
obtained using the transformation equations (30) where ¥ = -a. The resultant
stresses in the filament direction in the filament and matrix are given by

equations (31) and (32), respectively.

Ei pi
ot . —wh ol Tw Tl (31)
wl, i L i wl.
E A
L W
i
i B c 1 Ti
et i LT %L (32)
EL
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The matrix shear stress in the T direction in the plane normal to the L
direction is given by equation (33).

.G

i i c

TeLT T LT (33)
LT

The stress in the matrix transverse to the filament direction is cr%I,.
The total matrix stresses in the ¢ and 6 directions are given by equations

(34) and (35), respectively. The total matrix shear stress in the § direction

in the plane normal to the ¢ direction is given by equation (36).

i i ¢ Ti 2
crc¢ = 04 Ei + 0.1, €08 B (34)
X
. _E! .
i _ L1l c Ti , 2
o = "6 i to_q, sin” B (35)
y
i
; ., G
i _ i ¢ 1 Ti
Thoe T T¢e~é—i—- -5 0 g, sin 28 (36)
Xy

Failure occurs when one of the following conditions exist.

i a

a > g
wl w
i a

o > o
cL c
i

a > 0
cT c
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Or the total stresses in any direction (x, y) can be found using the
transformation equations and if the allowable strengths are known failure

occurs when the following conditions exist.

ot > g2
X

el > o2
y y
1 > 1@
Xy Xy
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NOMENCLATURE FOR THE APPENDIX

Area of matrix
Area of reinforcement
Modulus of elasticity of matrix

Modulus of elasticity of a single layer in the reinforcement
direction

Modulus of elasticity of a single layer transverse to the reinforce-
ment direction

Modulus of elasticity of reinforcement

Shear modulus of a single layer in the plane in which the reinforce-
ments lie

Denotes number of layers in a laminate

Normal force

Shear force

Difference between initial and final temperatures
Coefficient of thermal expansion of matrix
Coefficient of thermal expansion of reinforcement

Poisson's ratio relating strain in the transverse direction to
stress in the reinforcement direction

Poisson's ratio relating strain in the reinforcement direction to
stress in the transverse direction

Strain
Stress

Subscripts and Superscripts

Denotes allowable stress

Denotes matrix
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Denotes ith layer of laminate
Denotes direction of reinforcement
Denotes preload

Denotes direction transverse to reinforcement when used as
subscript and denotes temperature when used as a superscript

Denotes reinforcement
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